Energiereiche Röntgenstrahlen hinterlassen Spuren im Knochenkollagen

Die Bilder zeigen die Kollagenverteilung in Hechtknochen (b) vor (links) und nach (rechts) einem μCT-Experiment, (c) sowie vor (links) und nach (rechts) einem Röntgenbeugungs-μCT-Experiment an der mySpot-Beamline, BESSY. Außerdem (d) vor (links) und nach (rechts) einem 2D-Mapping-XRD mySpot-Experiment. Die geschädigten Bereiche erscheinen dunkel (mit gelben Pfeilen gekennzeichnet). Die Pfeile in Pink zeigen den Verlauf der Röntgenstrahlung.

Die Bilder zeigen die Kollagenverteilung in Hechtknochen (b) vor (links) und nach (rechts) einem μCT-Experiment, (c) sowie vor (links) und nach (rechts) einem Röntgenbeugungs-μCT-Experiment an der mySpot-Beamline, BESSY. Außerdem (d) vor (links) und nach (rechts) einem 2D-Mapping-XRD mySpot-Experiment. Die geschädigten Bereiche erscheinen dunkel (mit gelben Pfeilen gekennzeichnet). Die Pfeile in Pink zeigen den Verlauf der Röntgenstrahlung. © Charité Berlin/HZB

Ein Team der Charité Berlin hat an BESSY II die Schädigung durch fokussierte hochenergetische Röntgenstrahlung in Knochenproben von Fischen und Säugetieren analysiert. Mit einer Kombination von Mikroskopietechniken konnten sie die Zerstörung von Kollagenfasern dokumentieren. Röntgenmethoden könnten Knochenproben beeinträchtigen, wenn sie über einen längeren Zeitraum gemessen werden, schlussfolgern sie.

 

Es ist seit langem bekannt, dass Röntgenstrahlen ab einer bestimmten Dosis lebendes Gewebe schädigen; daher gibt es klare medizinische Indikationen, um die Strahlenbelastung auf ein Minimum zu beschränken. In der Grundlagenforschung an mineralisierten Gewebeproben wie Knochen setzen die Forschenden jedoch bislang auf immer stärkere Röntgenquellen.

Mehr ist nicht unbedingt besser

"Bisher galt eigentlich die Devise: Mehr Fluss und höhere Energie ist besser, weil man mit intensiverer Röntgenstrahlung eine größere Tiefenschärfe und höhere Auflösung erreichen kann", sagt Dr. Paul Zaslansky von der Charité-Universitätsmedizin. Zaslansky und sein Team haben nun an der MySpot-Beamline von BESSY II Knochenproben von Fischen und Säugetieren analysiert.

Knochenproben von Tieren

BESSY II erzeugt ein breites Spektrum an Röntgenstrahlung, das Einblicke in feinste Strukturen und sogar chemische und physikalische Prozesse in Materialien ermöglicht. "Dank der empfindlichen Detektoren konnten wir an verschiedenen Knochenproben nachweisen, dass Kollagenfasern durch die Strahlungsabsorption in den mineralischen Nanokristallen geschädigt werden", fasst Zaslansky die Ergebnisse der Studie zusammen.

Proteinfasern abgebildet

"Wir haben die Proben unter der Second-Harmonic Generation Laser-Scanning-Mikroskopie untersucht, um die Proteinfasern abzubilden", erklärt Erstautorin Katrein Sauer, die in Zaslanskys Team promoviert. Gemeinsam mit dem HZB-Experten Dr. Ivo Zizak bestrahlte sie Knochenproben von Hechten, Schweinen, Rindern und Mäusen mit genau kalibriertem Röntgenlicht. Die Strahlen hinterließen eine Zerstörungsspur, die in den konfokalen und elektronenmikroskopischen Bildern deutlich sichtbar ist. "Die hochenergetischen Photonen des Röntgenlichts lösen eine Kaskade von Elektronenanregungen aus. Die Ionisierung von Kalzium und Phosphor im Mineral schädigt dann Proteine wie Kollagen im Knochen", sagt Sauer. Der Abbau des Kollagens nimmt mit der Dauer der Bestrahlung zu, zeigt sich aber auch schon bei kurzer Bestrahlung mit hohem Flux.

Zerstörungsfreie Methode?

"Röntgenmethoden gelten in der Materialforschung als zerstörungsfrei, aber zumindest für die Erforschung von Knochengewebe trifft das nicht zu", sagt Zaslansky. "Wir müssen in der medizinischen Grundlagenforschung mehr darauf achten, dass wir nicht gerade die Strukturen beschädigen, die wir eigentlich analysieren wollen." Wie überall in der Medizin, auch wenn es kein lebendes Gewebe und keine DNA zu beschädigen gibt, kommt es also darauf an, eine minimale Dosis zu verwenden, um die Erkenntnisse zu erhalten, die den materiellen Zustand widerspiegeln, ohne Schäden zu verursachen. 

 

Anmerkung:

Die bei BESSY II erzeugte Röntgenstrahlung ist etwa zehntausendmal intensiver als die für medizinische Untersuchungen verwendete Röntgenstrahlung (für die Röntgenaufnahme eines gebrochenen Beins gibt das deutsche Bundesamt für Strahlenschutz eine Dosis von 0,01 Millisievert an). Röntgenmethoden sind für medizinische Untersuchungen äußerst nützlich.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.