Elektrokatalyse - Chemie und Struktur von Eisen- Kobalt-Oxyhydroxiden vermessen

LiFe<sub>x-1</sub>Co<sub>x</sub> Borophosphate k&ouml;nnten als preiswerte Anoden f&uuml;r die Erzeugung von gr&uuml;nem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molek&uuml;lzentren passiert.

LiFex-1Cox Borophosphate könnten als preiswerte Anoden für die Erzeugung von grünem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molekülzentren passiert. © P. Menezes / HZB /TU Berlin

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat Kobalt-Eisen-Oxyhydroxide an BESSY II untersucht. Diese Materialklasse zählt zu den besten Anoden-Katalysatoren, um elektrolytisch Wasser aufzuspalten und grünen Wasserstoff zu gewinnen. Insbesondere gelang es, die Oxidationsstufen der aktiven Elemente in verschiedenen Konfigurationen zu bestimmen. Die Ergebnisse könnten zur wissensbasierten Entwicklung neuer hocheffizienter und kostengünstiger katalytisch aktiver Materialien beitragen.

Sobald wie möglich müssen wir ohne fossile Brennstoffe auskommen, nicht nur im Energiesektor, sondern auch in der Industrie. Die aber ist auf Kohlenwasserstoffe und andere chemische Grundstoffe angewiesen, die bisher aus fossilen Ressourcen gewonnen werden. Solche Grundstoffe können im Prinzip mit Hilfe elektrokatalytisch aktiver Materialien und erneuerbar erzeugter Energie auch aus Wasser und Kohlendioxid hergestellt werden. Derzeit bestehen diese Katalysatormaterialien jedoch entweder aus teuren und seltenen Materialien oder sind nicht effizient genug.

Schlüsselreaktion bei der Wasserspaltung

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat nun Einblicke in die Chemie eines der aktivsten Katalysatoren für die anodische Sauerstoffentwicklungsreaktion (OER) gewonnen. Dies ist eine Schlüsselreaktion bei der Wasserspaltung, die Elektronen für die Wasserstoffentwicklungsreaktion (HER) bereit stellt. Der Wasserstoff kann dann zum Beispiel zu Kohlenwasserstoffen weiter verarbeitet werden. Darüber hinaus spielt die OER auch bei der direkten elektrokatalytischen Reduktion von Kohlendioxid zu Alkoholen oder Kohlenwasserstoffen eine zentrale Rolle.

Elektrokatalysatoren für die Sauerstoffentwicklung

Eine vielversprechende Klasse von Elektrokatalysatoren für OER sind Kobalt-Eisen-Oxyhydroxide. Das Forschungsteam analysierte eine Reihe von helikalen LiFe1-xCox-Borophosphaten an BESSY II, die sich während der OER zu aktiven Kobalt-Eisen-Oxyhydroxiden umstrukturieren. Mit  verschiedenen in situ Spektroskopietechniken gelang es, die Oxidationsstufen der Element Eisen (Fe) und Kobalt (Co) zu bestimmen.

Katalytisches Zentrum untersucht

„Eisen spielt eine wichtige Rolle in OER-Katalysatoren auf Kobalt-Basis. Der genaue Grund dafür ist jedoch umstritten. Die meisten Studien gehen davon aus, dass Eisen in niedrigeren Oxidationsstufen (+3) Teil der aktiven Struktur ist. In unserem Fall konnten wir jedoch Eisen in Oxidationsstufen größer als 4 nachweisen, und außerdem zeigen, dass sich Bindungsabstände deutlich verkürzt haben. Damit können wir das katalytisch aktive Zentrum deutlich genauer verstehen", so Menezes.

Elektrokatalysatoren ermöglichen den Ladungstransfer vom Substrat (hier Wasser) zu den Elektroden, was meist mit einer Änderung der Oxidationsstufen der Übergangsmetalle einhergeht. Diese Veränderungen des Oxidationszustands sind jedoch manchmal zu schnell, um erkannt zu werden. Dies macht es schwierig, das Funktionsprinzip des Katalysators zu verstehen, insbesondere wenn er zwei potenziell aktive Elemente wie Eisen und Kobalt enthält. „Wir hoffen, dass die detaillierte elektronische und strukturelle Beschreibung wesentlich zur Verbesserung von OER-Katalysatoren beitragen kann", sagt Menezes.

 

Anmerkung: An dem Team waren Wissenschaftler*innen des Helmholtz-Zentrum Berlin, der Technischen Universität Berlin und der Freien Universität Berlin beteiligt. Die Röntgenabsorptionsspektroskopie wurde an der Beamline KMC-3 bei BESSY II durchgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Nachricht
    09.10.2025
    Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Das indische Ministerium für Wissenschaft und Technologie hat die Empfängerinnen und Empfänger des Vaishvik Bhartiya Vaigyanik (VAIBHAV)-Stipendiums bekannt gegeben, einer Flaggschiff-Initiative zur Förderung der Zusammenarbeit zwischen der indischen Forschungs-Diaspora in den MINT-Fächern und führenden Forschungseinrichtungen in Indien. Zu den Preisträgern 2025 zählt Dr. Prashanth W. Menezes, der am HZB die Abteilung für Materialchemie für Katalyse leitet.
  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.