BESSY II: Experimenteller Nachweis einer exotischen Quantenphase in Au2Pb

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung f&uuml;r Au<sub>2</sub>Pb. Das lineare Verhalten ist der Nachweis f&uuml;r ein Dirac-Semimetall. Zus&auml;tzlich wird ein Lifshitz-&Uuml;bergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.&nbsp;

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung für Au2Pb. Das lineare Verhalten ist der Nachweis für ein Dirac-Semimetall. Zusätzlich wird ein Lifshitz-Übergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.  © HZB

Ein Team am HZB hat die elektronische Struktur von Au2Pb an BESSY II durch winkelaufgelöste Photoemissionsspektroskopie über einen weiten Temperaturbereich untersucht: Die Ergebnisse zeigen die elektronische Struktur eines dreidimensionalen topologischen Dirac-Semimetalls und stehen im Einklang mit theoretischen Berechnungen.

Die experimentellen Daten zeigen die charakteristische Signatur eines Lifshitz-Übergangs. Die Studie erweitert die Palette der derzeit bekannten Materialien, die dreidimensionale Dirac-Phasen aufweisen. Außerdem zeigt der beobachtete Lifshitz-Übergang einen praktikablen Mechanismus auf, mit dem die Ladungsträgerart bei der Stromleitung umgeschaltet werden kann, ohne dass das Material mit Fremdatomen dotiert werden müsste. Zudem wird das Au2Pb als Kandidat für die Realisierung eines topologischen Supraleiters interessant.

Die Studie, die auch theoretische Rechnungen aus San Sebastian und Materialsynthese aus Princeton umfasst, wurde in der Zeitschrift Physical Review Letters als "Editor's Suggestion" ausgewählt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.