Wo Quantencomputer wirklich punkten können

Das Problem des Handlungsreisenden ist ein Klassiker in der Mathematik. Ein Reisender soll auf dem kürzesten Weg N Städte besuchen und wieder zum Ausgangspunkt zurückkehren. Mit steigender Anzahl N explodiert die Anzahl der möglichen Routen. Dieses Problem ist dann mit Näherungsverfahren lösbar. Quantenrechner könnten hier rascher deutlich bessere Lösungen liefern.

Das Problem des Handlungsreisenden ist ein Klassiker in der Mathematik. Ein Reisender soll auf dem kürzesten Weg N Städte besuchen und wieder zum Ausgangspunkt zurückkehren. Mit steigender Anzahl N explodiert die Anzahl der möglichen Routen. Dieses Problem ist dann mit Näherungsverfahren lösbar. Quantenrechner könnten hier rascher deutlich bessere Lösungen liefern. © HZB

Die vorliegende Arbeit (Pfeil) zeigt, dass ein bestimmter Teil der kombinatorischen Probleme mit Quantencomputern sehr viel besser l&ouml;sbar ist, m&ouml;glicherweise sogar exakt.</p>
<p>

Die vorliegende Arbeit (Pfeil) zeigt, dass ein bestimmter Teil der kombinatorischen Probleme mit Quantencomputern sehr viel besser lösbar ist, möglicherweise sogar exakt.

© HZB

Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.

Quantencomputer rechnen mit so genannten Qbits, die nicht wie bei konventionellen logischen Schaltungen entweder Null oder Eins betragen, sondern in einem präzisen Sinne alle Werte dazwischen annehmen. Diese Qbits werden durch stark heruntergekühlte Atome, Ionen oder supraleitende Schaltkreise realisiert, und es ist physikalisch noch sehr aufwändig, einen Quantencomputer mit vielen Qbits zu bauen. Doch mit mathematischen Methoden lässt sich schon jetzt erforschen, was fehlertolerante Quantencomputer künftig leisten könnten. „Darüber gibt es viele Mythen, und zuweilen auch zu einem Grade heiße Luft und Hype. Aber wir haben uns der Frage einmal mit mathematischen Methoden rigoros gestellt und solide Ergebnisse zum Thema geliefert. Vor allem haben wir geklärt, in welchem Sinne es überhaupt Vorteile geben kann“, sagt Prof. Dr. Jens Eisert, der eine gemeinsame Forschungsgruppe an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin leitet.

Als Paradebeispiel dient das bekannte Problem des Handlungsreisenden: Ein Reisender soll eine Anzahl von Städten besuchen und im Anschluss wieder in die Heimatstadt zurückkehren. Wie sieht die kürzeste Route aus? Dieses Problem ist zwar leicht verständlich, aber wird mit steigender Anzahl von Städten immer komplexer, die Rechenzeit explodiert. Das Problem des Handlungsreisenden steht für eine Gruppe von Optimierungsproblemen, die enorme wirtschaftliche Bedeutung haben, ob es um Schienennetze, Logistik oder um die Optimierung von Ressourcen geht. Mit Näherungsverfahren lassen sich gute approximative Lösungen finden.

Das Team um Jens Eisert und seinen Kollegen Jean-Pierre Seifert arbeitete nun rein analytisch, um zu evaluieren, wie ein Quantencomputer mit Qbits diese Klasse von Problemen lösen könnte. Ein klassisches Gedankenexperiment mit Stift und Papier und einer Menge Fachwissen. „Wir nehmen einfach an, unabhängig von der physikalischen Realisierung, dass es ausreichend Qbits gibt und betrachten die Möglichkeiten, damit Rechenoperationen durchzuführen“, erklärt Vincent Ulitzsch, Doktorand an der Technischen Universität Berlin. Dabei erkannten sie Ähnlichkeiten zu einem bekannten Problem der Kryptographie, also der Verschlüsselung von Daten. „Wir stellten dann fest, dass wir eine Unterklasse dieser Optimierungsprobleme mit dem Shor-Algorithmus behandeln können,“ sagt Ulitzsch. Damit „explodiert“ die Rechenzeit nicht mehr mit der Anzahl der Städte (exponentiell, 2N), sondern steigt nur noch polynomial, also mit Nx, wobei x eine Konstante ist. Die so errechnete Lösung ist außerdem qualitativ deutlich besser als die Näherungslösung mit dem konventionellen Algorithmus.

„Wir haben gezeigt, dass Quantencomputer für bestimmte Instanzen des Problems prinzipiell einen Vorteil gegenüber klassischen Computern aufweisen, wenn es um eine bestimmte, aber sehr wichtige und praktisch relevante Klasse kombinatorischer Optimierungsprobleme geht“, sagt Eisert.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.