Where quantum computers can score

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly.

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly. © HZB

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly.

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly. © HZB/Eisert

The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Quantum computers use so-called qubits, which are not either zero or one as in conventional logic circuits, but can take on any value in between. These qubits are realised by highly cooled atoms, ions or superconducting circuits, and it is still physically very complex to build a quantum computer with many qubits. However, mathematical methods can already be used to explore what fault-tolerant quantum computers could achieve in the future. "There are a lot of myths about it, and sometimes a certain amount of hot air and hype. But we have approached the issue rigorously, using mathematical methods, and delivered solid results on the subject. Above all, we have clarified in what sense there can be any advantages at all," says Prof. Dr. Jens Eisert, who heads a joint research group at Freie Universität Berlin and Helmholtz-Zentrum Berlin.

The well-known problem of the travelling salesman serves as a prime example: A traveller has to visit a number of cities and then return to his home town. Which is the shortest route? Although this problem is easy to understand, it becomes increasingly complex as the number of cities increases and computation time explodes. The travelling salesman problem stands for a group of optimisation problems that are of enormous economic importance, whether they involve railway networks, logistics or resource optimisation. Good enough solutions can be found using approximation methods.

The team led by Jens Eisert and his colleague Jean-Pierre Seifert has now used purely analytical methods to evaluate how a quantum computer with qubits could solve this class of problems. A classic thought experiment with pen and paper and a lot of expertise. "We simply assume, regardless of the physical realisation, that there are enough qubits and look at the possibilities of performing computing operations with them," explains Vincent Ulitzsch, a PhD student at the Technical University of Berlin. In doing so, they unveiled similarities to a well-known problem in cryptography, i.e. the encryption of data. "We realised that we could use the Shor algorithm to solve a subclass of these optimisation problems," says Ulitzsch. This means that the computing time no longer "explodes" with the number of cities (exponential, 2N), but only increases polynomially, i.e. with Nx, where x is a constant. The solution obtained in this way is also qualitatively much better than the approximate solution using the conventional algorithm.

"We have shown that for a specific but very important and practically relevant class of combinatorial optimisation problems, quantum computers have a fundamental advantage over classical computers for certain instances of the problem," says Eisert.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.