Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile

Unter dem Rasterelektronenmikroskop sieht die CsPbI<sub>3</sub>-Schicht (gro&szlig;e Bl&ouml;cke im oberen Teil des Bildes) auf dem FTO-Substrat nach Ausgl&uuml;hen unter Umgebungsluft fast genauso aus wie nach Ausgl&uuml;hen unter kontrollierten Bedingungen.

Unter dem Rasterelektronenmikroskop sieht die CsPbI3-Schicht (große Blöcke im oberen Teil des Bildes) auf dem FTO-Substrat nach Ausglühen unter Umgebungsluft fast genauso aus wie nach Ausglühen unter kontrollierten Bedingungen. © HZB

Die Box-Chart-Statistik zeigt Wirkungsgrade von Solarzellen, die unter kontrollierten Bedingungen hergestellt wurden im Vergleich mit Solarzellen, die in Umgebungsluft gegl&uuml;ht wurden. &nbsp;

Die Box-Chart-Statistik zeigt Wirkungsgrade von Solarzellen, die unter kontrollierten Bedingungen hergestellt wurden im Vergleich mit Solarzellen, die in Umgebungsluft geglüht wurden.   © HZB

Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.

 

Metallhalogenid-Perowskite besitzen optoelektronische Eigenschaften, die für Photovoltaik und Optoelektronik bestens geeignet sind. Bei ihrer Entdeckung in 2009 erreichten Halogenidperowskite in Solarzellen einen Wirkungsgrad von 3,9 Prozent, der sich extrem rasch steigern ließ. Die besten (organischen) Perowskit-Solarzellen schaffen heute Wirkungsgrade von mehr als 26 Prozent. Allerdings ist die Langzeitstabilität bei diesen Solarzellen ein Problem, weil sie organische Kationen wie Methylammonium enthalten, die hohe Temperaturen und Feuchtigkeit nicht gut vertragen. Methylammonium lässt sich jedoch durch anorganische Kationen wie Cäsium ersetzen. Anorganische Halogenid-Perowskite mit der Summenformel CsPbX3 (wobei X für ein Halogenid wie Chlorid, Bromid und Iodid steht) bleiben selbst bei über 300 °C stabil. Die besten optischen Eigenschaften für die Photovoltaik besitzt CsPbI3 (Bandlücke 1,7 eV).

Ausglühen unter kontrollierter Atmosphäre

In der Regel werden Perowskit-Halbleiter aus einer Lösung auf ein Substrat aufgeschleudert oder gedruckt und in Handschuhboxen unter einer kontrollierten Atmosphäre verarbeitet: Dort verdampft das Lösungsmittel durch Erhitzung, worauf sich eine dünne Perowskit-Schicht auskristallisiert. Diese „kontrollierte Umgebung“ erhöht den Aufwand und die Kosten erheblich.

...oder in Umgebungsluft

Tatsächlich ist seit einiger Zeit bekannt, dass CsPbI3-Schichten auch unter Umgebungsbedingungen ausgeglüht werden können. Dabei zeigen die Proben, die in Umgebungsluft geglüht wurden, Wirkungsgrade von 19,8 Prozent, sind also sogar etwas besser, als Proben, die unter kontrollierten Bedingungen ausgeglüht wurden. Unklar aber war bisher, warum dies so ist.

Was geschieht an den Grenzflächen?

„Dafür haben wir die Grenzflächen zwischen CsPbI3 und dem angrenzenden Material im Detail untersucht, mit einer Reihe von Methoden, nicht nur unter dem Elektronenmikroskop, sondern auch mit Photolumineszenzverfahren und an BESSY II“ sagt Dr. Zafar Iqbal, Erstautor und Postdoc im Team von Prof. Antonio Abate.

BESSY II: weniger Defekte, bessere Mobilität

An BESSY II konnte ein Team um Prof. Marcus Bär mit harter Röntgenphotoelektronenspektroskopie (HAXPES) die chemische und elektronische Struktur der unterschiedlich geglühten CsPbI3- und Perowskit/Lochtransportschicht-Grenzfläche analysieren. „Bei den Proben, die unter Umgebungsluft geglüht wurden, beobachten wir eine Oberflächenmodifikation, die die Beweglichkeit der Ladungsträger an der Grenzfläche verbessert“ erklärt Iqbal. Optische Spektroskopie-Messungen zeigten, dass durch das Ausglühen an der Luft weniger Defekte entstehen und weniger Ladungsträger verloren gehen.

Die Aufskalierung der Produktion könnte sich vereinfachen

„Unsere Studie erklärt nun, warum das Ausglühen von CsPbI3-Filmen in Umgebungsluft so gut funktioniert“, sagt Iqbal. Dies könnte insbesondere für die Aufskalierung von Produktionsverfahren für eine mögliche Massenfertigung interessant sein.

Hinweis: Zafar Iqbal wurde während seiner Promotion in der Abate-Gruppe durch ein Stipendium des Deutschen Akademischen Austauschdienstes (DAAD) finanziert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.