Kleine Kraftpakete für ganz besonderes Licht

Ein gepulster Laser läuft mit dem Elektronenstrahl durch den MLS-U125-Undulator und erzeugt eine Energiemodulation. Derselbe Undulator dient bei den folgenden Durchgängen des Elektronenstrahls als Strahler. Die Undulatorstrahlung wird von einer schnellen Fotodiode erfasst, während der Laserpuls mit Hilfe eines elektrooptischen Schalters vom Erfassungspfad ferngehalten wird.

Ein gepulster Laser läuft mit dem Elektronenstrahl durch den MLS-U125-Undulator und erzeugt eine Energiemodulation. Derselbe Undulator dient bei den folgenden Durchgängen des Elektronenstrahls als Strahler. Die Undulatorstrahlung wird von einer schnellen Fotodiode erfasst, während der Laserpuls mit Hilfe eines elektrooptischen Schalters vom Erfassungspfad ferngehalten wird. © HZB/ Communications Physics

Jörg Feikes und Arnold Kruschinski im Kontrollraum von BESSY II und der MLS.

Jörg Feikes und Arnold Kruschinski im Kontrollraum von BESSY II und der MLS. © Ina Helms / HZB

Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.

Wenn ultraschnelle Elektronen um die Kurve fliegen, senden sie Licht aus – Synchrotronstrahlung. Das wird in so genannten Speicherringen genutzt, in denen Magnete die Elektronen auf eine geschlossene Bahn zwingen. Dieses Licht ist longitudinal inkohärent und besteht aus einem breiten Spektrum an Wellenlängen. Durch seine hohe Brillanz ist es ein vortreffliches Werkzeug für die Materialforschung. Durch Monochromatoren lassen sich zwar auch einzelne Wellenlängen aus dem Spektrum herauspicken aber dies reduziert die Strahlungsleistung um viele Größenordnungen auf Werte von wenigen Watt.

Auf die Größe kommt es an

Doch was wäre, wenn ein Speicherring stattdessen von sich aus monochromatisches, kohärentes Licht mit Leistungen von einigen Kilowatt, analog einem Hochleistungslaser, liefern würde? Auf diese Frage fanden der Physiker Alexander Chao und sein Doktorand Daniel Ratner 2010 eine Antwort: Werden die in einem Speicherring kreisenden Elektronenpakete kürzer als die Wellenlänge des von ihnen ausgesendeten Lichts, dann wird die emittierte Strahlung kohärent und dadurch millionenfach leistungsstärker.

„Dazu muss man wissen, dass die Elektronen in einem Speicherring nicht homogen verteilt kreisen“, erklärt Arnold Kruschinski, Doktorand am HZB und Hauptautor der Arbeit. „Sie bewegen sich in Paketen mit einer typischen Länge von etwa einem Zentimeter und einem Abstand von etwa 60 Zentimetern. Das ist sechs Größenordnungen mehr als die von Alexander Chao vorgeschlagenen Mikro-Bunche.“ Der chinesische Theoretiker Xiujie Deng hat für das Steady-State-Micro-Bunching-Projekt (SSMB) einen Satz von Einstellungen für einen bestimmten Typ von Kreisbeschleunigern definiert, die Isochrone oder „low-alpha“-Ringe. Mit diesen entstehen nach Wechselwirkung mit einem Laser viele kurze Teilchenpakete, deren Länge und Abstand nur einen Mikrometer beträgt.

Dass dies funktioniert, hat das Forschungsteam vom HZB, der Tsinghua University und der PTB bereits 2021 in einem Proof-of-Principle-Experiment nachgewiesen. Dafür nutzte es die Metrology Light Source (MLS) in Adlershof – den ersten für low-alpha Betrieb konzipierten Speicherring überhaupt. Das Team konnte nun in umfangreichen Experimenten die Theorie von Deng zur Generierung von Mikro-Bunchen vollständig verifizieren. „Für uns ist das ein wichtiger Schritt auf dem Weg zu einer neuartigen SSMB-Strahlenquelle“, sagt Arnold Kruschinski.

Der lange Weg zum Erfolg

Bis dahin wird es allerdings noch dauern, ist sich HZB-Projektleiter Jörg Feikes sicher. Er sieht beim SSMB viele Parallelen zur Entwicklung der Freie-Elektronen-Laser. „Nach ersten Experimenten und Jahrzehnten Entwicklungsarbeit sind aus dieser Idee dann kilometerlange, supraleitende Beschleuniger geworden“, sagt er. „Solche Entwicklungen sind sehr langfristig. Am Anfang steht eine Idee, dann eine Theorie, und dann kommen Experimentatoren, die das nach und nach umsetzen und ich denke, dass sich SSMB genauso entwickeln wird.“

Kai Dürfeld / Wissenschaftsjournalist

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.