Photovoltaic living lab reaches the 100 Megawatt-hour mark

Blick auf die Solarfassade des Reallabors.

Blick auf die Solarfassade des Reallabors. © HZB

About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

Solar facades offer untapped potential for generating clean electricity. How much they actually deliver and which environmental factors play a role are being studied at HZB's real laboratory. The facade elements installed there have now reached the 100-megawatt-hour mark.

This amount of energy is enough to supply a four-person household in Germany with clean electricity for 30 years. At HZB, the electricity generated by the laboratory’s solar facade is used entirely on-site, which makes the facility particularly economical. According to initial estimates, the additional costs compared to a conventional facade have amortized after 18 years.

What is the Living Lab?

It is a research building on the BESSY II location in Berlin-Adlershof equipped with a photovoltaic facade. A total of 360 frameless, blue-coated modules were installed on the south, west, and north facades of the building. Particular emphasis was placed on ensuring the solar facade elements are aesthetically pleasing.

The living laboratory is equipped with 120 measuring points and sensors for monitoring among others temperature, solar radiation and ventilation. This allows the behavior of the solar modules and the entire PV facade system to be evaluated under different seasonal and weather conditions over a long period.

Findings contribute to the building-integrated photovoltaics advisory service

These insights directly contribute to advisory services, benefiting society as a whole. HZB operates the independent advisory service for building-integrated photovoltaics (BAIP). Experts provide advice to architects, builders and urban planners on technologies, products, design options, technical feasibility, and legal frameworks.

 

sz

  • Copy link

You might also be interested in

  • Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    News
    14.03.2025
    Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. He will also have an affiliation with Humboldt University in Berlin, where he will gain teaching experience in preparation for a future professorship.
  • HZB-postdoc Feng Liang becomes associate Professor at Xi'an Jiaotong University
    News
    07.03.2025
    HZB-postdoc Feng Liang becomes associate Professor at Xi'an Jiaotong University
    Dr. Feng Liang has joined the HZB Institute Solar Fuels in 2021. Now, he has secured an associate professorship at the Green Hydrogen Innovation Center in the Department of Mechanical Engineering, Xi'an Jiaotong University, China. He will start to build up his research team in June 2025.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.