Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
Bestandteile einer Mond-Solarzelle. © Felix Lang.
Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.
„Das Highlight unserer Studie ist, dass wir das benötigte Glas für unsere Solarzellen direkt und ohne Aufbereitungsprozesse aus dem Mondregolith gewinnen können“, sagt der Projektverantwortliche Felix Lang, der am Institut für Physik und Astronomie eine von der VolkswagenStiftung geförderte Freigeist-Nachwuchsgruppe leitet.
Die von den Forschenden getesteten Solarzellen haben einen geschichteten Aufbau, wobei die Substrat- und Deckschicht aus Mondglas besteht und die dazwischenliegende Schicht aus Perowskit. „Diese Solarzellen benötigen nur 500 bis 800 Nanometer dünne Halbleiterschichten, somit könnte man mit einem Kilogramm Perowskit-Rohmaterial von der Erde 400 Quadratmeter Solarzellen auf dem Mond herstellen“, fasst Lang zusammen. Dennoch war die Entwicklung der ersten Mond-Perowskit-Solarzelle schwierig: „Am Anfang war es unklar, ob wir diese in ausreichender Qualität auf unreinem Regolith-Mondglas herstellen können“, sagt er und hebt die erstaunliche Stabilität der hergestellten Solarzellen gegenüber Weltraumstrahlung hervor – eine wesentliche Voraussetzung für eine stabile Energieversorgung auf dem Mond.
Weiterlesen in der Meldung der Uni Potsdam: https://www.uni-potsdam.de/de/nachrichten/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au
red./Uni Potsdam
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=29846;sprache=de 
- Link kopieren
-
Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen.
-
Gute Aussichten für Zinn-Perowskit-Solarzellen
Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
-
Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.