KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen

Rechenpower im Chemie-Labor: Kevin Jablonka (links) und sein Team am HIPOLE Jena. Foto: Renzo Paulus

Rechenpower im Chemie-Labor: Kevin Jablonka (links) und sein Team am HIPOLE Jena. Foto: Renzo Paulus

Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

Die Studie ist jetzt im Fachjournal Nature Chemistry erschienen (DOI 10.1038/s41557-025-01815-x).

Insgesamt wurden über 2.700 chemische Aufgaben aus Forschung und Lehre getestet – von Grundlagenwissen bis hin zu komplexen Problemen. In Bereichen wie der Vorhersage von Reaktionen oder der Analyse großer Datensätze konnten KI-Modelle oft mit hoher Effizienz punkten. Gleichzeitig zeigte sich jedoch eine kritische Schwäche: Die Modelle lieferten auch dann selbstsichere Antworten, wenn sie faktisch falsch lagen. Menschliche Chemikerinnen und Chemiker zeigten sich hier deutlich vorsichtiger und hinterfragten ihre Einschätzungen.

„Unsere Studie macht deutlich, dass KI ein wertvolles Werkzeug sein kann – aber kein Ersatz für menschliche Expertise“, sagt Dr. Kevin M. Jablonka, Leiter der Studie. Die Ergebnisse geben wichtige Impulse für den verantwortungsvollen Einsatz von KI in der chemischen Forschung und Lehre.

Das HIPOLE Jena (Helmholtz-Institut für Polymere in Energieanwendungen Jena) ist ein Institut des HZB in Kooperation mit der Friedrich-Schiller-Universität Jena (FSU Jena).

ma

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.