AI in Chemistry: Study Highlights Strengths and Weaknesses
Computing power in the chemistry lab: Kevin Jablonka (left) and his team at HIPOLE Jena. Photo: Renzo Paulus
How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists.
The study has recently been published in the journal Nature Chemistry (DOI 10.1038/s41557-025-01815-x).
More than 2,700 chemistry tasks from research and education were tested—ranging from fundamental knowledge to complex problems. In areas such as reaction prediction or the analysis of large datasets, AI models often excelled with high efficiency. However, a critical weakness became apparent: the models also produced confident answers even when they were factually incorrect. Human chemists, by contrast, were more cautious and questioned their own assessments.
“Our study shows that AI can be a valuable tool—but it is no substitute for human expertise,” says Dr. Kevin M. Jablonka, lead author of the study. The findings offer important insights for the responsible use of AI in chemical research and education.
HIPOLE Jena (Helmholtz Institute for Polymers in Energy Applications Jena) is an institute of HZB in cooperation with Friedrich Schiller University Jena (FSU Jena).
ma
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=30246;sprache=en
- Copy link
-
Key technology for a future without fossil fuels
In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
-
5000th patient treated with protons for eye tumours
For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
-
MXene as a frame for 2D water films shows new properties
An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.