MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an

<p class="x_MsoNormal">Schematische Darstellung des Kristallgitters von Ti<sub>3</sub>C<sub>2</sub> mit Wasserstoff und den zugeh&ouml;rigen Bindungsorbitalen. Links: normal zur c-Achse und rechts senkrecht zur c-Achse.</p>
<p class="x_MsoNormal">&nbsp;

Schematische Darstellung des Kristallgitters von Ti3C2 mit Wasserstoff und den zugehörigen Bindungsorbitalen. Links: normal zur c-Achse und rechts senkrecht zur c-Achse.

  © N. Nickel / HZB

Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.

Wasserstoff ist ein Energieträger, der sich durch Elektrolyse von Wasser mit „grünem“ Strom klimafreundlich produzieren lässt. Allerdings ist die Speicherung von Wasserstoff nicht ganz einfach. Hier könnten MXene eine interessante Option bieten. MXene sind Verbindungen aus Metall und Stickstoff oder Kohlenstoff, die eine zweidimensionale hexagonale Struktur bilden und dadurch besondere physikalische und chemische Eigenschaften besitzen. Sowohl in als auch zwischen den 2D Schichten können sich Atome und Moleküle, beispielsweise Wasserstoff, einlagern. „Wir wissen aber, dass Wasserstoffatome und sogar Moleküle komplexe Bindungen in MXene und an dessen Oberflächen bilden“, sagt Prof. Dr. Norbert Nickel, Physiker am HZB. Will man Wasserstoff speichern, kommt es aber auch darauf an, dass sich der im Material gebundene Wasserstoff bei Bedarf auch wieder aus dem Material herauslösen lässt.

Experimentell wurde bereits mit Neutronenstreuexperimenten gezeigt, dass sich Wasserstoff in das MXen-Material Ti3C2 einlagern lässt. Wie genau aber die Wasserstofforbitale mit den Titan- und Kohlenstoff-Orbitalen wechselwirken, hat Nickel bereits in 2024 mit Hilfe der etablierten Dichtefunktionaltheorie berechnet. Seine Ergebnisse geben Aufschluss über die Art der chemischen Bindung von Wasserstoff, sowie über den Einfluss der Temperatur auf den Diffusionsprozess (Annalen der Physik, 536, 2400011 (2024)). Die quantenmechanischen Berechnungen der Wechselwirkungen zwischen Wasserstoffatomen und Molekülen mit Ti3C2 zeigen jedoch, dass das einfache Bild der chemischen Bindung nicht reicht, um die Bindungseigenschaften von Wasserstoff zu beschreiben.

In einer neuen Arbeit in 2025 hat Nickel nun die chemischen Orbitale weiter analysiert: Dabei zeigten die Berechnungen, dass interstitielle Wasserstoffatome und Moleküle s-artige Bindungen mit benachbarten Titanatomen und s-p Hybridorbitale mit benachbarten Kohlenstoffatomen bilden.

Für den Diffusionsprozess ist es wichtig, dass solche chemischen Bindungen gelöst werden können. In Festkörpern können Fremdatome, z.B. Wasserstoff, entweder über Leerstellen oder über Zwischengitterplätze diffundieren. Die Diffusion hängt also von der Konzentration von Leerstellen und Zwischengitterplätzen ab. „Die Modellierung zeigt, dass der Transport von Wasserstoff in Ti3C2 über Zwischengitterplätze erfolgt und die Diffusion über Leerstellen keine Rolle spielt“, fasst Nickel das Ergebnis zusammen. Dadurch können Wasserstoffatome und Moleküle in Ti3C2 MXene eine hohe Beweglichkeit mit Diffusionskoeffizienten von 2.4 × 10−5 cm−2/s bei einer moderaten Temperatur von 500 K erreichen.  

Die Berechnungen der orbitalen Wechselwirkungen von Wasserstoff und Ti3C2 ermöglichen außerdem erstmals im Voraus abzuschätzen, in welchen Parameterbereichen besonders interessante experimentelle Beobachtungen zu erwarten sind, zum Beispiel mit spektroskopischen Messungen an BESSY II.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues HZB-Magazin „Lichtblick“ ist erschienen
    Nachricht
    18.09.2025
    Neues HZB-Magazin „Lichtblick“ ist erschienen
    In der neuen Ausgabe stellen wir unsere neue kaufmännische Geschäftsführerin vor. Wir zeigen aber auch, wie wichtig uns der Austausch ist: Die Wissenschaft lebt ohnehin vom fruchtbaren Austausch. Uns ist aber auch der Dialog mit der Öffentlichkeit sehr wichtig. Und ebenso kann Kunst einen bereichernden Zugang zur Wissenschaft schaffen und Brücken bauen. Um all diese Themen geht es in der neuen Ausgabe der Lichtblick.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.