Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen

Eine selbstorganisierte Lage aus Phenothiazin-Molekülen ermöglicht die Bildung von Perowskit-Schichten mit guter optoelektronischer Qualität und reduziert Verluste.

Eine selbstorganisierte Lage aus Phenothiazin-Molekülen ermöglicht die Bildung von Perowskit-Schichten mit guter optoelektronischer Qualität und reduziert Verluste. © 10.1002/aenm.202500841

Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.

Perowskit-Halbleiter sind ein spannendes neues Material für Solarzellen. Sie sind extrem dünn und flexibel, einfach und günstig herzustellen und hoch effizient. Bevor Perowskit-Solarzellen jedoch in großem Maßstab vermarktet werden können, müssen zwei Hürden überwunden werden: Erstens sind sie noch nicht über Jahrzehnte hinweg stabil, und zweitens enthalten die leistungsstärksten Perowskit-Materialien Blei. Eine interessante, ungiftige Alternative, die am HZB untersucht wird, sind Zinn-Perowskit-Solarzellen. Sie sind potenziell stabiler als ihre bleihaltigen Pendants. Dank ihrer besonderen elektrooptischen Eigenschaften eignen sie sich besonders gut für Tandem- und Dreifach-Solarzellen. Dennoch sind Zinn-Perowskit-Solarzellen noch weit davon entfernt, die hohen Wirkungsgrade von bleihaltigen Perowskiten zu erreichen.

SAMs in Zinn-Perowskit?

In aktuellen Zinn-Perowskit-Solarzellen wird die unterste Kontaktschicht mit PEDOT:PSS hergestellt. Dies ist nicht nur ein aufwendiger Prozess, sondern führt auch zu Verlusten. In Bleiperowskiten kann die PEDOT:PSS-Schicht jedoch durch eine elegantere Lösung ersetzt werden: selbstorganisierte Monoschichten (SAMs), die sogar zu neuen Wirkungsgradrekorden geführt haben.

Bislang lieferten Experimente mit SAMs auf Basis der Verbindung MeO-2PACz in Zinnperowskiten schlechtere Ergebnisse als mit PEDOT:PSS. Dennoch war der Projektleiter Dr. Artem Musiienko überzeugt, dass SAMs auch in Zinnperowskiten Vorteile bieten können.

Zusammen mit seinen Partnern analysierte er mögliche Probleme bei der Verwendung von MeO-2PACz als Kontaktschicht für Zinnperowskit. Berechnungen mit der Dichtefunktionaltheorie ergaben, dass die resultierende Grenzfläche nicht gut mit dem benachbarten Perowskitgitter harmonierte, was zu erheblichen Verlusten führte.

Phenothiazin passt besser

Das Team suchte daher nach alternativen selbstorganisierten Monoschichtmolekülen (SAM), die eine bessere Passung ermöglichen. Sie entdeckten Phenothiazin, eine schwefelhaltige funktionelle Gruppe, die mit Th-2EPT abgekürzt wird. Dr. Tadas Malinauskas und Mantas Marčinskas von der Technischen Universität Kaunas in Litauen synthetisierten die neue Verbindung. Im Vergleich zu PEDOT ermöglicht Th-2EPT die Bildung von Perowskitfilmen mit vergleichbarer Kristallinität, allerdings mit kleineren Körnern. Zinn-Perowskit-Solarzellen mit einer SAM aus Th-2EPT übertreffen Kontrollzellen, die entweder mit PEDOT oder MeO-2PACz hergestellt wurden. Th-2EPT führt zu einer außergewöhnlich guten Grenzfläche, die Rekombinationsverluste minimiert.

Gezieltes Design führte zum Erfolg

„Wir haben gezeigt, dass die Leistung von Zinn-Perowskit-Photovoltaik durch gezieltes Moleküldesign deutlich verbessert werden kann“, sagt Artem Musiienko. Die neuen Zinn-Perowskit-Solarzellen mit Th-2EPT erreichen einen Wirkungsgrad von 8,2 %. Diese Ergebnisse legen den Grundstein für weitere Verbesserungen der Zinn-Perowskit-Grenzflächen und ebnen den Weg für die Entwicklung von Tandemsolarzellen aus reinem Zinn-Perowskit. „Wir weisen nach, dass die höhere Leistung auf die hervorragende optoelektronische Qualität des auf dem neuartigen SAM gewachsenen Perowskits zurückzuführen ist“, sagt Valerio Stacchini, einer der Erstautoren der Veröffentlichung.

Hinweis: Dr. Artem Musiienko leitet die Gruppe Robotisierte Optoelektronische Materialien und Photovoltaik-Engineering am HZB sowie das BMBF-Projekt NanoMatFutur COMET-PV.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.