5000th patient treated with protons for eye tumours
From the patient's perspective at the treatment station: The proton beam is directed through the hole in the shield onto the tumour in the eye. The brass shield is adjusted to the individual tumour size and protects the surrounding tissue. © HZB/. S. Kodalle
The treatment centre for eye tumour therapy in Berlin-Wannsee © HZB/ S. Kodalle
For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
The treatment room and proton accelerator are specially adapted to the requirements for optimal and highly precise treatment of tumours inside the eye and are unique in this combination. The largest group of tumours in the eye is the rare and malignant uveal melanoma, which, as the name suggests, develops in the uvea of the eye.
Proton therapy is used as an effective method of fighting tumours, often as an alternative to removing the eye, with the aim of preserving the eye and its function as much as possible. The protons can be directed very precisely at the tumour, sparing the surrounding healthy tissue. Compared to other radiation methods, proton therapy causes less damage to the cornea, lens, retina and optic nerve in many cases.
8 August 2025 was a special day: it was the day on which the 5000th patient completed their eye tumour treatment. This makes the Berlin experts one of the world's leading centres: together, the two institutions (Charité and HZB) have treated 10 percent of all eye tumours treated with protons worldwide. The cooperation with Charité – Universitätsmedizin Berlin also opens up prospects for the further development of proton therapy in order to carry out even more precise and effective treatments in the future – for the benefit of patients.
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=30926;sprache=en
- Copy link
-
Iridium-free catalysts for acid water electrolysis investigated
Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
-
Self assembling monolayer can improve lead-free perovskite solar cells too
Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
-
Scrolls from Buddhist shrine virtually unrolled at BESSY II
The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.