HZB Newsroom

Suchergebnisse zu: Stichwort: HZB-Eigenforschung

  • <p>Auf Basis der Messdaten errechnetes Strukturmodell von hochpor&ouml;sem a-Si:H, das sehr rasch abgeschieden wurde. Dicht geordnete Dom&auml;nen (DOD) sind blau und Hohlr&auml;ume rot gezeichnet. Die graue Schicht stellt die ungeordnete a-Si:H-Matrix dar. Die runden Ausschnitte zeigen die Nanostrukturen vergr&ouml;&szlig;ert bis zur atomaren Aufl&ouml;sung (unten, Si-Atome: grau, Si-Atome an den Oberfl&auml;chen der Leerr&auml;ume: rot; H: wei&szlig;)</p>
    Science Highlight
    29.10.2020
    Ordnung in der Unordnung: Dichtefluktuationen in amorphem Silizium entdeckt
    Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern atomare Substrukturen identifiziert. Solche a-Si:H-Dünnschichten werden bereits seit Jahrzehnten in Solarzellen, TFT-Displays und Detektoren eingesetzt. Die Ergebnisse zeigen, dass sich drei unterschiedliche Phasen innerhalb der amorphen Matrix bilden, die Qualität und Lebensdauer der Halbleiterschicht dramatisch beeinflussen. Die Arbeit wird auf dem Titel der aktuellen Ausgabe von Physical Review Letters hervorgehoben.

    [...]

  • <p>Ultrakalte Atome in einem optischen Gitter z&auml;hlen zu den betrachteten Quantensystemen.</p>
    Science Highlight
    27.10.2020
    Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen
    Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und zwar mithilfe von komplexen Festkörpersystemen, die experimentell untersucht werden können. Die Studie wurde in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht. [...]
  • <p>Skalierbare gro&szlig;fl&auml;chige BiVO<sub>4</sub>-Photoanode auf FTO mit Ni-Stromabnehmern.</p>
    Science Highlight
    26.10.2020
    Solarer Wasserstoff: Maß für die Stabilität von Photoelektroden
    Sonnenenergie kann zur Herstellung von Wasserstoff, einem vielseitigen Brennstoff, genutzt werden. Um dies durch elektrolytische Wasserspaltung zu erreichen, werden hochwertige Photoelektroden benötigt. Leider neigen die bekannten Materialien dazu, während des Prozesses zu korrodieren. Nun hat ein Team am HZB in internationaler Zusammenarbeit die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden untersucht. Sie beobachteten die Prozesse "in operando" (bei der elektrolytischen Wasserspaltung) während der Sauerstoff-Entwicklungsreaktion (OER). Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren verglichen und so auch verbessert werden kann. [...]
  • <p>(a,b) Kryo-Elektronenmikroskopie des 2D-Gitters sowie das Beugungsmuster eines Ausschnitts. (c-e) Die Vergr&ouml;&szlig;erung zeigt das 2D Pascal-Dreiecksmuster, mit den eingef&uuml;gten Protein-Molek&uuml;len.</p> <p></p>
    Science Highlight
    15.10.2020
    Nanomuster aus Protein-Molekülen unter dem Kryo-Elektronenmikroskop
    Ein Team vom Helmholtz-Zentrum Berlin (HZB) konnte mit Kryo-Elektronenmikroskopie in einer Probe aus Proteinen regelmäßige, zweidimensionale Strukturen in der Form von Pascal-Dreiecken nachweisen. Die Proben wurden in einem Labor von chinesischen Kooperationspartnern synthetisiert. Die Methode hat Potenzial, um auch Energiematerialien neu zu entdecken.

    [...]

  • <p>Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle.</p>
    Science Highlight
    12.10.2020
    Perowskit-Materialien: Neutronen zeigen Zwillingsbildung in Halid-Perowskiten
    Solarzellen auf Basis von hybriden Halid-Perowskiten erreichen hohe Wirkungsgrade. Diese gemischt organisch-anorganischen Halbleiter werden in der Regel als dünne Filme aus Mikrokristallen produziert. Eine Untersuchung mit der Laue-Kamera an der Neutronenquelle BER II konnte nun aufklären, dass es beim Auskristallisieren auch bei Raumtemperatur zur Zwillingsbildung kommt. Dieser Einblick ist hilfreich, um Herstellungsverfahren von Halid-Perowskiten zu optimieren. 

    [...]

  • <p>Periodische Metaoberfl&auml;chen (grau) k&ouml;nnen die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Gr&ouml;&szlig;enordnungen steigern.</p>
    Science Highlight
    04.09.2020
    „Upconversion“ von Photonen bei schwacher Lichtintensität – der Schlüssel zu neuen Anwendungen in Energie- und Biotechnik
    Durch Umwandlung von energiearmen in energiereiche Photonen lässt sich der nutzbare Bereich des Lichtspektrums deutlich erweitern. Doch bisher gelang das nur bei hoher Lichtintensität. Durch die Kombination bestimmter Nanopartikel mit einer sogenannten Metaoberfläche konnten Wissenschaftler des HZB und der Bundesanstalt für Materialforschung und -prüfung (BAM) den Effekt erstmals auch für relativ schwaches Licht nutzbar machen. Das ebnet den Weg für künftige Anwendungen in der Photovoltaik, zum Nachweis biologischer Substanzen oder als Messfühler für elektrische Felder. [...]
  • <p>Struktur vom TUB75: die gesamte MOF-Architektur (oben) und ihre leitf&auml;hige anorganische Baueinheit (unten)</p>
    Science Highlight
    26.08.2020
    Molekulare Architektur: Neue Materialklasse für Energiespeicher von morgen
    Forscher der Technischen Universität Berlin haben eine neue Familie von Halbleitern geschaffen, die vom Helmholtz-Zentrum Berlin (HZB) auf ihre Eigenschaften hin untersucht wurde. Den ersten Vertreter tauften sie auf den Namen TUB75. Das Material gehört zur Klasse der Metallorganischen Frameworks, kurz MOFs. Es könnte neue Perspektiven für die Energiespeicherung eröffnen. Die Arbeit wurde in Advanced Materials publiziert. [...]
  • <p>Intelligente mathematische Werkzeuge f&uuml;r die Simulation von Spin-Systemen reduzieren die ben&ouml;tigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum J&uuml;lich.</p> <p></p>
    Science Highlight
    14.08.2020
    Mathematisches Werkzeug hilft, Quantenmaterialien rascher zu berechnen
    Viele Quantenmaterialien lassen sich bislang kaum rechnerisch simulieren, weil die benötigte Rechenzeit zu groß wäre. Nun hat eine gemeinsame Forschergruppe an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin (HZB) einen Weg aufgezeigt, wie sich die Rechenzeiten deutlich verkürzen lassen. Dies könnte die Entwicklung von Materialien für künftige energieeffiziente IT-Technologie beschleunigen.

    [...]

  • <p>Durch das Be- und Entladen &auml;ndert sich die Struktur kristalliner Silizium-Elektroden in ein schachbrettartiges Bruchmuster. Am HZB wurde nun beobachtet, dass diese Defekte beim be- und entladen nicht gr&ouml;&szlig;er werden sondern in ihrem Muster bestehen bleiben.</p>
    Science Highlight
    29.07.2020
    Hoffnung auf bessere Batterien – Forscher verfolgen live das Laden und Entladen von Silizium-Elektroden
    Silizium als Werkstoff für Elektroden in Lithium-Ionen-Batterien verspricht eine deutliche Steigerung von deren Kapazität. Das Manko dieses Materials: Durch die Belastung beim Be- und Entladen wird es leicht beschädigt. Wissenschaftlern am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) ist es nun zum ersten Mal gelungen, diesen Prozess direkt und detailliert an kristallinen Silizium-Elektroden zu beobachten. Operando-Experimente am Speicherring BESSY II lieferten neue Erkenntnisse darüber, wie Brüche im Silizium entstehen – und wie sich das Material dennoch vorteilhaft einsetzen lässt. [...]
  • <p>F&uuml;r die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molek&uuml;lenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Molek&uuml;le) an das Enzym&nbsp;andocken.Jede gefundene Substanz ist einpotentieller Startpunkt f&uuml;r die Entwicklung gr&ouml;&szlig;erer Molek&uuml;le.</p>
    Science Highlight
    13.07.2020
    Neue Molekülbibliothek für systematische Suche nach Wirkstoffen
    Um die systematische Entwicklung von Medikamenten zu beschleunigen, hat das MX-Team am Helmholtz-Zentrum Berlin (HZB) mit der Drug Design Gruppe der Universität Marburg eine neue Substanzbibliothek aufgebaut. Sie besteht aus 1103 organischen Molekülen, die als Bausteine von neuen Wirkstoffen infrage kommen. Das MX-Team hat diese Bibliothek nun in Kooperation mit der FragMAX-Gruppe am MAX IV validiert. Die Substanzbibliothek des HZB steht weltweit für die Forschung zur Verfügung und spielt auch bei der Suche nach Wirkstoffen gegen SARS-CoV-2 eine Rolle.

    [...]

  • <p>So lief das Experiment ab: Zwei Laserpulse treffen in kurzem zeitlichen Abstand auf den D&uuml;nnfilm aus Eisen-Platin-Nanok&ouml;rnchen auf: Der erste Laserpuls zerst&ouml;rt die Spinordnung, w&auml;hrend der zweite Laserpuls die nun unmagnetisierte Probe anregt. Ein R&ouml;ntgenpuls ermittelt im Anschluss, wie sich das Gitter ausdehnt oder kontrahiert.</p>
    Science Highlight
    10.07.2020
    Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie
    Die neueste Generation von magnetischen Festplattenlaufwerken besteht aus magnetischen Dünnschichten, die zu den Invar-Materialien zählen und eine extrem robuste und hohe Datenspeicherdichte ermöglichen. Ein technologisch relevantes Material für solche HAMR-Datenspeicher sind Dünnschichten aus Eisen-Platin-Nanokörnern. Ein internationales Team um die gemeinsame Forschungsgruppe von Prof. Dr. Matias Bargheer am HZB und der Uni Potsdam hat nun erstmals experimentell beobachtet, wie in diesen Eisen-Platin-Dünnschichten eine besondere Spin-Gitter-Wechselwirkung die Wärmeausdehnung des Kristallgitters aufhebt. Die Arbeit ist in Science Advances publiziert.

    [...]

  • <p>Grafische Darstellung des Druckprozesses f&uuml;r die Perowskit-LED.</p>
    Science Highlight
    12.06.2020
    Perowskit-LED aus dem Drucker – auf dem Weg zu einem neuen Standard für die Elektronik
    Einem Team von Forschern des HZB und der Humboldt-Universität zu Berlin ist es zum ersten Mal gelungen, Leuchtdioden (LEDs) aus einem hybriden Perowskit-Halbleitermaterial per Tintenstrahldruck herzustellen. Das Tor zu einer breiten Anwendung solcher Materialien in vielerlei elektronischen Bauelementen ist damit geöffnet. Der Durchbruch gelang den Wissenschaftlern mithilfe eines Tricks: dem „Impfen“ der Oberfläche mit bestimmen Kristallen.

    [...]

  • <p>Die Publikation hat es auf den Titel der aktuellen Ausgabe der SCIENCE geschafft.</p>
    Science Highlight
    05.06.2020
    BESSY II: Experiment zeigt erstmals im Detail, wie Elektrolyte metallisch werden
    Ein internationales Team hat erstmals an BESSY II ein raffiniertes Experiment entwickelt, um die Bildung eines metallischen Leitungsbandes in Elektrolyten zu beobachten. Dafür stellten sie kryogene Lösungen aus flüssigem Ammoniak mit verschiedenen Konzentrationen von Alkali-Metallen her und untersuchten den Flüssigkeitsstrahl mit weichem Röntgenlicht. Äußerlich zeigt sich der Übergang von einzelnen Metall-Atomen in Lösung zu einem metallischen Verbund, indem die Farbe der Lösung von blau zu golden wechselt. Diesen Vorgang konnten sie nun durch die Messdaten an BESSY II im Detail analysieren. Die Arbeit ist in Science publiziert und erscheint sogar als Titelgeschichte. [...]
  • <p>Perowskit-Oxide zeichnen sich durch die Summenformel ABO<sub>3</sub> aus, wobei die Elemente A (gr&uuml;n) und B (blau) auf bestimmten Gitterpl&auml;tzen sitzen und von Sauerstoff-Atomen (rot) umgeben sind.</p>
    Science Highlight
    02.06.2020
    Katalysatoren: Effiziente Wasserstoffgewinnung mit Struktur
    Regenerativ erzeugter Wasserstoff gilt als ökologischer Rohstoff der Zukunft. Um ihn durch Elektrolyse effizient aus Wasser herzustellen, setzt die Forschung heute auch auf Perowskit-Oxide. Das Fachmagazin Journal of Physics: Energy hat Dr. Marcel Risch vom Helmholtz-Zentrum Berlin (HZB) eingeladen, den aktuellen Stand der Forschung zu skizzieren. [...]
  • <p>Die Abbildung zeigt die Ver&auml;nderungen in der Struktur von FASnI3:PEACl-Filmen w&auml;hrend der Behandlung bei verschiedenen Temperaturen.</p>
    Science Highlight
    11.05.2020
    Auf dem Weg zu bleifreien und stabilen Perowskit-Solarzellen
    Die besten Perowskit-Solarzellen schaffen zwar enorme Wirkungsgrade, enthalten aber giftiges Blei. Bleifreie Perowskit-Solarzellen erreichten bislang nur geringe Wirkungsgrade, die zudem schnell abnehmen. Eine neue Arbeit einer internationalen Kooperation zeigt nun, wie sich stabile Perowskit-Schichten herstellen lassen, die Zinn anstelle von Blei enthalten. Dabei schützen organische Verbindungen das Zinn vor Oxidation und sorgen für Stabilität. [...]
  • <p>Zwei der vier magnetischen Wechselwirkungen bilden ein neues dreidimensionales Netz aus Dreiecken mit gemeinsamen Ecken, das als Hyper-Hyperkagome-Gitter bekannt ist und zu dem Quanten-Spin-Fl&uuml;ssigkeitsverhalten in PbCuTe<sub>2</sub>O<sub>6</sub> f&uuml;hrt.</p>
    Science Highlight
    11.05.2020
    Zukünftige Informationstechnologien: Dreidimensionale Quanten-Spin-Flüssigkeit entdeckt
    Quanten-Spin-Flüssigkeiten sind Kandidaten für den Einsatz in zukünftigen Informationstechnologien. Bisher sind Quanten-Spin-Flüssigkeiten meist nur in ein- oder zweidimensionalen magnetischen Systemen zu finden. Nun hat eine internationale Kooperation unter der Leitung eines HZB-Teams Kristalle aus PbCuTe2O6 mit Neutronenexperimenten untersucht. Sie fanden Spin-Flüssigkeits-Verhalten in drei Dimensionen, bedingt durch ein sogenanntes Hyper-Hyperkagome-Gitter. Die experimentellen Daten passen sehr gut zu theoretischen Simulationen, die am HZB durchgeführt wurden. [...]
  • <p>Die CIGS-Pero-Tandemzelle wurde in einer typischen Laborgr&ouml;&szlig;e von einem Quadratzentimeter realisiert.</p>
    Science Highlight
    14.04.2020
    Tandemsolarzellen-Weltrekorde: Neuer Zweig im NREL-Chart
    Eigens für eine Entwicklung aus dem HZB gibt es nun in der Grafik für Solarzellen-Weltrekorde einen neuen Zweig. Die neue Weltrekord-Zelle besteht aus den Halbleitern Perowskit und CIGS, die zu einer monolithischen „zwei-Terminal“-Tandemzelle verschaltet sind. Aufgrund der verwendeten Dünnschichttechnologien überleben solche Tandemzellen im Weltall deutlich länger und können sogar auf biegsamen Folien produziert werden. Die neue Tandemzelle erreicht einen zertifizierten Wirkungsgrad von 24,16 Prozent. [...]
  • <p class="western">Im Grundzustand sind die magnetischen Momente entweder auf- oder abw&auml;rts gerichtet, die zum &auml;u&szlig;eren Magnetfeld antiparallelen Spins (rot) sind nie zusammen (rechts). Durch Anregung k&ouml;nnen sich weitere Spins antiparallel ausrichten und Bethe-Ketten entstehen (wei&szlig;e Spins, links).</p>
    Science Highlight
    06.04.2020
    Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen
    Vor 90 Jahren postulierte der Physiker Hans Bethe, dass in bestimmten magnetischen Festkörpern ungewöhnliche Muster auftreten. Nun ist es einem internationalen Team gelungen, solche Bethe-Strings erstmals experimentell nachzuweisen. Sie führten Neutronenstreuexperimente an verschiedenen Neutronenquellen durch, darunter auch Messungen am einzigartigen Hochfeldmagneten des BER II* am HZB. Die experimentellen Daten sind in hervorragender Übereinstimmung mit der theoretischen Vorhersage von Bethe und beweisen einmal mehr die Leistungsfähigkeit der Quantenphysik. [...]
  • <p>Dieses Bild zeigt ein R&ouml;ntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die regul&auml;re Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schlie&szlig;t.</p>
    Science Highlight
    01.04.2020
    BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen
    Ein Team aus Beschleunigerphysikern, Undulatorexperten und Experimentatoren hat am Speicherring BESSY II gezeigt, wie sich die Händigkeit (Helizität) von zirkular polarisierter Synchrotronstrahlung schneller umschalten lässt – und zwar bis zu einer Million Mal schneller als bisher. Sie nutzten dazu einen am HZB entwickelten elliptischen Doppel-Undulator und betrieben den Speicherring im sogenannten Two-Orbit-Modus. Dies ist eine besondere Betriebsart, die erst vor kurzem an BESSY II entwickelt wurde und die Basis für die schnelle Umschaltung liefert. Der ultraschnelle Wechsel der Lichthelizität ist vor allem für Untersuchungen von Prozessen in magnetischen Materialien interessant und wird schon seit langem von einer großen Nutzergemeinde erwartet. [...]
  • <p>MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch R&ouml;ntgenanalysen zeigen sich Ver&auml;nderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts).</p>
    Science Highlight
    02.03.2020
    Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung
    Eine neue Materialklasse kann elektrische Energie sehr schnell speichern. Es handelt sich um zweidimensionale Titankarbide, so genannte MXene. Wie eine Batterie speichern sie durch elektrochemische Reaktionen große Mengen elektrischer Energie - aber im Gegensatz zu Batterien können sie in Sekundenschnelle geladen und entladen werden. In Zusammenarbeit mit der Drexel-Universität hat ein Team am HZB gezeigt, dass die Einlagerung von Harnstoffmolekülen zwischen den MXene-Schichten die Kapazität solcher "Pseudokondensatoren" um mehr als 50 Prozent erhöhen kann. An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind. [...]
  • <p>Nur 60 Sek. Messzeit mit dem neuen Detektor reichten schon aus, um die Elektrondichte des PETase-Enzyms zu ermitteln. Sie zeigt alle strukturellen Merkmale des Enzyms.</p>
    Nachricht
    17.02.2020
    Neuer Detektor beschleunigt die Proteinkristallographie
    An einer der drei MX-Beamlines am HZB wurde letzte Woche ein neuer Detektor installiert. Im Vergleich zum alten Detektor ist der neue besser, schneller und empfindlicher. Er ermöglicht es, binnen kürzester Zeit vollständige Datensätze von komplexen Proteinen aufzunehmen. [...]
  • <p>Kombination der einzelnen Aufnahmen zu einem 3D-Bild der Zellarchitektur mit Mitochondrien (gr&uuml;n), Lysosomen (lila), multivesikul&auml;ren K&ouml;rperchen (rot) und dem endoplasmatischen Retikulum (beige).</p>
    Science Highlight
    12.02.2020
    Röntgenmikroskopie an BESSY II: Nanopartikel können Zellen verändern
    Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an den Synchrotronlichtquellen BESSY II und ALBA. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally. [...]
  • <p>Bei 25,8 Tesla findet in dem Urankristall ein Phasen&uuml;bergang statt und ein komplexes magnetisches Muster etabliert sich.</p>
    Science Highlight
    10.02.2020
    Nicht alle Kristalle lassen sich zum Ferromagnetismus zwingen
    Mit einem äußeren Magnetfeld lassen sich normalerweise die winzigen magnetischen Momente in Festkörpern entlang des Außenfeldes ausrichten – so dass die Probe schließlich ferromagnetisch wird. Doch das trifft nicht auf jedes Material zu. Ein Team hat nun Kristalle aus einer Uranverbindung unter extrem hohen Magnetfeldern mit Neutronen untersucht und ein deutlich komplexeres Verhalten beobachtet. Die Experimente fanden am Hochfeldmagneten an der Neutronenquelle BER II des HZB statt, der ein konstantes Magnetfeld von bis zu 26 Tesla erzeugt. Dies ist etwa 500.000mal stärker als das Erdmagnetfeld. Weitere Experimente mit gepulsten Magnetfeldern bis zu 45 Tesla wurden am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) durchgeführt.  [...]
  • <p>Das Synchrotron-R&ouml;ntgen-Tomogramm zeigt starke Risse (schwarz) im Bereich der elektrischen Kontaktierung (wei&szlig;).</p>
    Science Highlight
    07.02.2020
    Batterieforschung: Mit Neutronen und Röntgenlicht die Alterung von Lithium-Batterien analysiert
    Ein internationales Team hat mit Neutronen- und Röntgen-Tomographie die dynamischen Prozesse untersucht, die an den Elektroden in Lithium-Batterien stattfinden und zu Leistungsabbau führen. Mit einem neuen mathematischen Verfahren gelang es, die zu einer kompakten Rolle aufgewickelten Elektroden „virtuell zu entrollen“ und so tatsächlich zu beobachten, was an den Elektroden geschieht. Die Studie wurde in Nature Communications veröffentlicht. [...]
  • Science Highlight
    31.01.2020
    Perowskit-Solarzellen: Internationaler Konsens über Alterungs-Messprotokolle
    Expertinnen und Experten aus 51 Forschungseinrichtungen, darunter auch aus dem HZB, haben sich nun auf die Verfahren geeinigt, um die Stabilität von Perowskit-Solarzellen zu messen und ihre Qualität zu bewerten. Die Konsenserklärung wurde in Nature Energy publiziert und gilt als Meilenstein für die weitere Entwicklung dieses neuen Solarzellen-Typs auf dem Weg zur industriellen Anwendung. [...]
  • <p>Die Tandemsolarzelle wurde im typischen Laborma&szlig;stab von einem Quadratzentimeter realisiert. Das Aufskalieren ist jedoch m&ouml;glich.</p>
    Science Highlight
    29.01.2020
    Rekord: Wirkungsgrad von Perowskit-Tandemsolarzelle springt auf 29,15 Prozent
    Im Rennen um immer höhere Wirkungsgrade liegt ein HZB-Entwicklungsteam wieder vorne. Die Gruppen von Steve Albrecht und Bernd Stannowski  haben eine Tandemsolarzelle aus den Halbleitern Perowskit und Silizium entwickelt, die 29,15 Prozent des eingestrahlten Lichts in elektrische Energie umwandelt. Dieser Wert ist offiziell durch das CalLab des Fraunhofer-Instituts für Solare Energiesysteme (ISE) zertifiziert. Damit ist die Überwindung der 30% Effizienz-Marke in greifbare Nähe gerückt. [...]
  • <p>Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschlie&szlig;end wurde der Bleigehalt in ihren Bl&auml;ttern analysiert.</p>
    Science Highlight
    21.01.2020
    Pflanzen nehmen Blei aus Perowskit-Solarzellen stärker auf als erwartet
    Blei aus metall-organischen Perowskitverbindungen wird deutlich stärker von Pflanzen aufgenommen als beispielsweise Blei aus anorganischen Quellen. Dies zeigt eine Studie von HZB-Forscher Antonio Abate mit Partnern aus China und Italien, die in Nature communications veröffentlicht ist. [...]
  • Science Highlight
    18.12.2019
    Topologische Materialien für die Informationstechnologie: Verlustfrei Signale übertragen
    Neue Experimente an BESSY II mit magnetisch dotierten Topologischen Isolatoren zeigen vielversprechende Möglichkeiten für eine verlustfreie Signalübertragung auf. Ein überraschendes Phänomen der Selbstorganisation hilft dabei. Zukünftig könnte es so möglich sein, Materialien zu entwickeln, die dieses Phänomen bei Raumtemperatur zeigen und sich als Q-Bit Recheneinheiten in einem Quantencomputer einsetzen lassen. Die Arbeit ist im renommierten Wissenschaftsjournal Nature publiziert. [...]
  • <p>Die Zeichnung verdeutlicht, wie das organische Methylammoniumion (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) mit den Jodid-Ionen wechselwirkt. Durch die Verschiebung der Jod-Atome aus der gemeinsamen Ebene mit Blei geht das Symmetriezentrum verloren.</p>
    Science Highlight
    13.11.2019
    Perowskit-Solarzellen: Mögliche Ursache für hohe Wirkungsgrade aufgedeckt
    Ein HZB-Team hat durch kristallographische Analysen an der Synchrotronquelle Diamond Light Source (DLS) in Großbritannien erstmals nachgewiesen, dass Hybrid-Perowskite ohne Inversions-Zentren auskristallisieren. Durch Wechselwirkungen zwischen den organischen Molekülen und benachbarten Jod-Atomen können sich so ferroelektrische Domänen bilden, die über weitere Effekte höhere Wirkungsgrade in Solarzellen ermöglichen. In anorganischen Perowskiten kann diese ferroelektrische Domänenbildung nicht stattfinden. [...]
  • <p>Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn.</p>
    Science Highlight
    15.10.2019
    „Tanzmuster“ von Skyrmionen vermessen
    In bestimmten magnetischen Materialien wie Cu2OSeO3 entstehen magnetische Wirbel, so genannte Skyrmionen. Diese Skyrmionen lassen sich durch niedrige elektrische Ströme kontrollieren, was eine energiesparende Datenverarbeitung ermöglichen könnte. Nun ist es einem Team gelungen, an der VEKMAG-Station an BESSY II eine neue Technik zu entwickeln, um diese Wirbel präzise zu vermessen und dabei die drei unterschiedlichen Eigenschwingungen zu beobachten. [...]
  • <p>Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent.</p>
    Science Highlight
    09.09.2019
    Weltrekord für Perowskit-CIGS-Tandem-Solarzelle
    Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht. [...]
  • <p>Diese am HZB selbstentwickelte Messzelle erm&ouml;glicht es, die Batteriezelle in "operando" zu analysieren.</p>
    Science Highlight
    06.09.2019
    Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt
    Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen. [...]
  • <p>Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt.</p>
    Science Highlight
    23.08.2019
    Mit Mathe Zeit sparen: Design-Werkzeug für korkenzieherförmige Nano-Antennen
    Erstmals hat ein HZB-Team mathematisch exakt formuliert, wie korkenzieherförmige Nano-Antennen mit Licht wechselwirken. Mit dem mathematischen Werkzeug lässt sich die jeweils geeignete Geometrie berechnen, die eine Nano-Antenne für konkrete Anwendungen in der Sensorik oder in der Informationstechnologie besitzen muss. [...]
  • <p>Der Messtisch rotiert extrem pr&auml;zise und mehrere hundert Male pro Sekunde um seine Achse.</p>
    Science Highlight
    21.08.2019
    Tomographie-Weltrekord: Zuschauen, wie Metall aufgeschäumt wird
    Mit einem am HZB entwickelten Rotationstisch hat ein internationales Forscher-Team an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Rekord erreicht: Mit 208 dreidimensionalen Röntgenaufnahmen (Tomographien) pro Sekunde konnten sie die dynamischen Prozesse beim Aufschäumen von flüssigem Aluminium dokumentieren. Im Fachjournal Nature Communications wird die Methode vorgestellt. [...]
  • <p>Prof. Dr. Christiane Becker im Reinraum am HZB-Standort Berlin-Adlershof</p>
    Portrait
    05.08.2019
    IM FOKUS: Mehr Licht in Solarzellen einfangen
    Christiane Becker erhöht mit winzigen Strukturen den Lichteinfang in Solarzellen und arbeitet daran, diese Technologie in die industriellen Umsetzung zu bringen. „Über allem schwebt am HZB dieser Spirit, dass wir an den erneuerbaren Energien der Zukunft mitarbeiten, und das ist ungemein beflügelnd“, erzählt sie im Portrait. [...]
  • <p>An den MX-Beamlines von BESSY II konnten Gottfried Palm, Gert Weber und Manfred Weiss die 3D-Architektur von MHETase aufkl&auml;ren.</p>
    Nachricht
    30.07.2019
    IM FOKUS: Mit BESSY II im Kampf gegen den Plastikmüll
    Kunststoffe sind wunderbare Materialien: extrem vielseitig und nahezu ewig haltbar. Doch genau das ist ein Problem, denn nach nur rund 100 Jahren Kunststoffproduktion befinden sich inzwischen Plastik-Partikel überall, im Grundwasser, in den Ozeanen, in der Luft und in der Nahrungskette.  [...]
  • <p class="MsoCommentText">Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb<sub>3</sub>Sn beschichtet wurde (rechts).</p>
    Science Highlight
    15.07.2019
    Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
    Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet. [...]
  • <p>Ein R&ouml;ntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.</p>
    Science Highlight
    09.07.2019
    Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert
    In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild. [...]
  • <p>Nach Anregung durch Synchrotronstrahlung (gr&uuml;n) emittiert Nickel R&ouml;ntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 &deg;C erh&ouml;ht (rechts).</p>
    Science Highlight
    28.06.2019
    Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert
    Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden. [...]
  • <p>Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN.</p>
    Science Highlight
    05.06.2019
    Organische Elektronik: Neuer Halbleiter aus der Familie der Kohlenstoffnitride
    Teams der Humboldt-Universität und am Helmholtz-Zentrum Berlin haben ein neues Material aus der Familie der Kohlenstoffnitride untersucht. Das Triazin-basierte graphitische Kohlenstoffnitrid (TGCN) ist ein Halbleiter, der sich gut für Anwendungen in der Optoelektronik eignen sollte. Die Struktur ist zweidimensional und erinnert an Graphen. Anders als beim Graphen ist die Leitfähigkeit jedoch senkrecht zu den Ebenen 65mal höher als in den Ebenen selbst. [...]
  • Nachricht
    04.06.2019
    Entwicklung eines miniaturisierten EPR-Spektrometers
    Mehrere Forschungseinrichtungen entwickeln mit dem Industriepartner Bruker eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR auf Englisch) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro. Am 3. Juni 2019 fand das Auftakttreffen am Helmholtz-Zentrum Berlin statt. [...]
  • <p>Ein erster Laserpuls (gr&uuml;n) regt die Elektronen im Cu<sub>2</sub>O an; Bruchteile von Sekunden sp&auml;ter folgt ein zweiter Laserpuls (UV-Licht), um die Energie des angeregten Elektrons zu messen.</p>
    Science Highlight
    09.05.2019
    Photokathoden aus Kupferoxid: Laserexperiment zeigt Ursachen für hohe Verluste
    Kupferoxid könnte in Solarzellen oder als Photokathode für die solare Energieumwandlung theoretisch hohe Wirkungsgrade ermöglichen. Praktisch aber kommt es zu großen Verlusten. Nun konnte ein Team am HZB mit einem raffinierten Femtosekunden-Laserexperiment aufklären, wo diese Verluste stattfinden: Sie treten weniger an den Grenzflächen auf, sondern vielmehr bereits im Innern des kristallinen Materials. Diese Ergebnisse geben Hinweise, um Kupferoxid und andere Metalloxide für Anwendungen als Energiematerialien zu optimieren. [...]
  • <p>Die Tomographie einer neuwertigen Lithium-Elektrode.</p>
    Science Highlight
    06.05.2019
    3D-Tomographien zeigen, wie Lithium-Akkus altern
    Lithium-Akkus verlieren mit der Zeit an Kapazität. Bei jeder neuen Aufladung können sich Mikrostrukturen an den Elektroden bilden, die die Kapazität weiter reduzieren. Nun hat ein HZB-Team zusammen mit Batterieforschern aus dem Forschungszentrum Jülich, der Universität Münster und Partnern aus Forschungseinrichtungen in China den Prozess der Degradation von Lithium-Elektroden erstmals im Detail dokumentiert. Dies gelang ihnen mithilfe eines 3D-Tomographieverfahrens mit Synchrotronstrahlung an BESSY II (HZB) sowie am Helmholtz-Zentrum Geesthacht (HZG). Ihre Ergebnisse sind in der Fachzeitschrift Materials Today veröffentlicht (Open Access). [...]
  • <p></p> <p>Durch Ko-Verdampfung von C&auml;siumiodid und&nbsp; Bleiiodid&nbsp; lassen sich d&uuml;nne Schichten aus CsPbI<sub>3</sub> auch bei moderaten Temperaturen herstellen. Ein C&auml;sium-&Uuml;berschuss f&uuml;hrt zu stabilen Perowskit-Phasen.</p>
    Science Highlight
    29.04.2019
    Anorganische Perowskit-Absorber für den Einsatz in Dünnschicht-Solarzellen
    Einem Team am Helmholtz-Zentrum Berlin ist es gelungen, durch Ko-Verdampfung anorganische Perowskit-Dünnschichten bei moderaten Temperaturen herzustellen – ein Nachtempern bei hohen Temperaturen entfällt. Dadurch lassen sich Dünnschichtsolarzellen aus diesem Material deutlich leichter herstellen. Anorganische Perowskite sind im Gegensatz zu den hybriden metallorganischen Perowskiten thermisch stabiler. Die Arbeit ist im Fachjournal Advanced Energy Materials veröffentlicht. [...]
  • <p>Zinnselenid besitzt eine schichtartige orthorhombische Kristallstruktur (links). Oberhalb von 500 Grad Celsius (rechts) &auml;ndert sich die Anordnung der Schichten.</p>
    Science Highlight
    24.04.2019
    Thermoelektrika: Neue Einblicke ins Rekordmaterial Zinnselenid
    Bei den Thermoelektrika könnte Zinnselenid die bisherigen Rekordhalter aus Wismuttellurid an Effizienz deutlich übertreffen. Allerdings ist der thermoelektrische Effekt in Zinnselenid nur bei Temperaturen oberhalb von 500 Grad so enorm. Nun zeigen Messungen an den Synchrotronquellen BESSY II und PETRA III, dass sich Zinnselenid auch bei Raumtemperatur als Thermoelektrikum nutzen lässt – sofern man hohen Druck anlegt. [...]
  • <p>Das Enzym MHETase ist ein riesiges komplex gefaltetes Molek&uuml;l. MHET-Molek&uuml;le aus PET-Kunststoff docken an einer aktiven Stelle im Inneren der MHETase an und werden dort aufgespalten.</p>
    Science Highlight
    12.04.2019
    „Molekulare Schere“ für den Plastikmüll
    Ein Team der Universität Greifswald und des Helmholtz-Zentrums Berlin (HZB) hat an BESSY II die Struktur eines wichtigen Enzyms ("MHETase") entschlüsselt. Die MHETase wurde in einem Bakterium entdeckt und ist in der Lage, zusammen mit einem zweiten Enzym, der PETase, den weit verbreiteten Kunststoff PET in seine Grundbausteine zu zerlegen. Die 3D-Struktur der MHETase ermöglichte es den Forschern bereits, die Aktivität dieses Enzyms gezielt zu optimieren, um es zusammen mit der PETase für das nachhaltige Recycling von PET zu nutzen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht. [...]
  • <p>Die Rasterelektronenmikroskopie zeigt einen Molybd&auml;nsulfidfilm, der bei Raumtemperatur aufgebracht wurde.</p>
    Science Highlight
    04.04.2019
    Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten
    Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an  Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht. [...]
  • <p>Phillippe Wernet schl&auml;gt am Ende seines Beitrags einen gro&szlig;en Bogen von der Vergangenheit (Opticae Thesaurus, 1572) der Forschung mit Licht bis in die Zukunft.</p>
    Science Highlight
    02.04.2019
    HZB an Sonderausgabe zu Ultraschneller Dynamik mit Röntgenmethoden beteiligt
    In der jetzt erschienenen Sonderausgabe der „Philosophical Transactions of the Royal Society of London“  berichten international ausgewiesene Experten über neue Entwicklungen bei Röntgenquellen und ultraschnellen zeitaufgelösten Experimenten. Auch HZB-Physiker wurden zu Beiträgen aufgefordert und haben geliefert. [...]
  • <p>Skizze einer Kohlenstoffstruktur mit Poren.</p>
    Science Highlight
    13.03.2019
    Röntgenanalyse von Kohlenstoff-Nanostrukturen hilft beim Materialdesign
    Nanostrukturen aus Kohlenstoff sind äußerst vielseitig: Sie können in Batterien und Superkondensatoren Ionen aufnehmen, Gase speichern oder Wasser entsalzen. Wie gut sie diese Aufgaben meistern, hängt von Größe und Form der Nanoporen ab. Über die Temperatur während der Synthese lassen sich die Nanoporen dabei stark verändern.  Bisher war es nur möglich, Form, Größe sowie die Verteilung der Nanoporen ungefähr abzuschätzen. Eine neue Studie zeigt nun, dass sich solche Informationen direkt und zuverlässig mit Hilfe der Kleinwinkel-Röntgenstreuung gewinnen lassen. Die Ergebnisse wurden in der Zeitschrift Carbon veröffentlicht. [...]
  • <p>Mit R&ouml;ntgenlicht (blau) werden Wassermolek&uuml;le angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen &uuml;ber Wasserstoffbr&uuml;cken gewinnen.</p>
    Science Highlight
    20.02.2019
    Wasser ist homogener als gedacht
    Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen. [...]
  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>
    Science Highlight
    14.02.2019
    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]
  • <p>Eine extrem d&uuml;nne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle.</p>
    Science Highlight
    31.01.2019
    Hauchdünn und extrem effizient: Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern
    Ein HZB-Team hat eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und CIGSe hergestellt und charakterisiert. Dabei setzten sie auf ein einfaches, robustes Produktionsverfahren, das sich auch für die Aufskalierung auf große Flächen eignet. Die Tandem-Solarzelle besitzt einen sehr hohen Wirkungsgrad von 21.6 %. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen. [...]
  • <p>Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen.</p>
    Science Highlight
    28.01.2019
    Batterien mit Siliziumanoden: Neutronenexperimente zeigen, wie Oberflächenstrukturen die Kapazität reduzieren
    Theoretisch könnten Anoden aus Silizium zehnmal mehr Lithium-Ionen speichern als die Graphit-Anoden, die seit vielen Jahren in kommerziellen Lithium-Batterien eingesetzt werden. Doch bisher sinkt die Kapazität von Silizium-Anoden mit jedem weiteren Lade-Entladezyklen stark ab. Nun hat ein HZB-Team mit Neutronenexperimenten am BER II in Berlin und am Institut Laue-Langevin in Grenoble aufgeklärt, was an der Oberfläche der Siliziumanode während des Aufladens passiert und welche Prozesse die Kapazität reduzieren. [...]
  • <p>Die Modellierung bezieht sich auf eine kubische Kristallstruktur (Pyrochlor-Gitter). Dabei wurden magnetische Wechselwirkungen nicht nur zwischen&nbsp; n&auml;chsten Nachbarn einbezogen, sondern auch noch zu den &uuml;bern&auml;chsten Nachbarn (siehe Zeichnung).</p>
    Science Highlight
    21.01.2019
    Neue Erkenntnisse über magnetische Quanteneffekte in Festkörpern
    Mit einer neuen theoretischen Methode gelang es einer internationalen Kooperation erstmals, magnetische Quanteneffekte im bekannten 3D Pyrochlor-Heisenberg-Modell systematisch zu untersuchen. Überraschende Erkenntnis: nur bei kleinen Spinwerten bilden sich quantenphysikalische Phasen. [...]
  • <p class="MsoPlainText">Die Atmosph&auml;re l&auml;sst sich mit einer Badewanne vergleichen, die nur bis zum Rand gef&uuml;llt werden kann, damit die Erderw&auml;rmung auf einen bestimmten Wert begrenzt bleibt. Mit negativen Emissionen k&ouml;nnte man einen weiteren kleinen Abfluss schaffen. Dennoch f&uuml;hrt kein Weg daran vorbei, den Hahn zuzudrehen.</p>
    Science Highlight
    16.01.2019
    Klimawandel: Was könnte künstliche Photosynthese beitragen, um die globale Erwärmung zu begrenzen?
    Wenn die CO2-Emissionen nicht rasch genug sinken, muss künftig CO2 aus der Atmosphäre entfernt werden, um die globale Erwärmung zu begrenzen. Nicht nur Aufforstung oder Biomasse, sondern auch neue Technologien für künstliche Photosynthese könnten dazu beitragen. Ein HZB-Physiker und eine Forscherin der Universität Heidelberg haben überschlagen, welche Flächen solche Lösungen benötigen. Die künstliche Photosynthese könnte CO2 zwar effizienter binden als das natürliche Vorbild, aber noch gibt es keine großen und langzeitstabilen Module. Ihre Berechnungen veröffentlichte das Team in „Earth System Dynamics“. [...]
  • <p>Photokathode im supraleitenden Photoinjektorsystem.</p>
    Science Highlight
    07.12.2018
    Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz
    Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert, so dass diese nun hohe  Quanteneffizienz besitzen. Damit stehen geeignete Photokathoden zur Verfügung, um 2019 den ersten Elektronenstrahl in bERLinPro zu erzeugen.  [...]
  • <p>Das Molek&uuml;l organisiert sich entlang der Oberfl&auml;che der Elektroden, bis eine geschlossene Monolage entsteht.</p>
    Science Highlight
    23.11.2018
    Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen
    Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. Die Studie wurde in Advanced Energy Materials publiziert und ist auf dem Front-Cover des Journals erschienen. [...]
  • <p>Die Illustration zeigt eine Verbindung, in deren Zentrum ein Eisen-Atom sitzt. Es ist von 4 CN-Gruppen und einem Bipyridin Molek&uuml;l umgeben. Das h&ouml;chste besetzte Eisenorbital ist als gr&uuml;n-rote Wolke dargestellt. Sobald eine Cyangruppe da ist, beobachtet man wie sich die &auml;u&szlig;eren Eisenorbitale delokalisieren, sodass auch um die Stickstoffatome Elektronen dicht vorhanden sind. Bild. T. Splettst&ouml;&szlig;er/HZB</p>
    Science Highlight
    14.11.2018
    Übergangsmetallkomplexe: Gemischt geht's besser
    Ein Team hat an BESSY II untersucht, wie unterschiedliche Eisenkomplex-Verbindungen Energie aus eingestrahltem Licht verarbeiten. Dabei konnten sie zeigen, warum bestimmte Verbindungen das Potenzial haben, Licht in elektrische Energie umzuwandeln. Die Ergebnisse sind für die Entwicklung von organischen Solarzellen interessant. Die Studie wird auf dem Cover der Fachzeitschrift PCCP angekündigt. [...]
  • <p></p> <p>Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.</p>
    Science Highlight
    12.11.2018
    Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang
    Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert. [...]
  • <p>Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist.</p>
    Science Highlight
    10.11.2018
    Graphen auf dem Weg zur Supraleitung
    Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.   [...]
  • <p>Andriy Zakutayev (NREL) hat Fredrike Lehmann im Namen der Jury&nbsp; f&uuml;r ihren Posterbeitrag auf der ICTMC-21 in Boulder, Colorado, USA, einen Preis &uuml;berreicht. Bild. Privat</p>
    Nachricht
    19.10.2018
    Posterpreis an HZB-Doktorandin
    Frederike Lehmann aus der HZB-Abteilung Struktur und Dynamik von Energiematerialien hat auf einer internationalen Fachkonferenz, der ICTMC-21 in Boulder, Colorado, USA, einen Posterpreis erhalten. Sie stellte ihre Ergebnisse zur Synthese und Charakterisierung von Hybrid-Perowskit-Materialien vor, die als interessante Kandidaten für neuartige Solarzellen gelten. [...]
  • <p>Mit Fremdatomen dotierter Schaum aus Kohlenstoff. </p>
    Science Highlight
    18.10.2018
    Nanodiamanten als Photokatalysatoren
    Diamant-Nanomaterialien gelten als heiße Kandidaten für günstige Photokatalysatoren. Sie lassen sich durch Licht aktivieren und können dann bestimmte Reaktionen zwischen Wasser und CO2 beschleunigen und klimaneutrale „solare Brennstoffe“ erzeugen. Das EU-Projekt DIACAT hat nun solche Diamant-Materialien mit Bor dotiert und an BESSY II gezeigt, wie dies die photokatalytischen Eigenschaften deutlich verbessern könnte. [...]
  • <p>Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erh&ouml;hten P-Atome, wei&szlig;, die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erh&ouml;hten P-Atomen als Dreiecke. </p>
    Science Highlight
    15.10.2018
    Blauer Phosphor – jetzt erstmals vermessen und kartiert
    Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente. Die Ergebnisse sind nun in Nano Letters publiziert.
    [...]
  • <p>Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm. </p>
    Science Highlight
    02.10.2018
    Neutronen tasten Magnetfelder im Innern von Proben ab
    Mit Hilfe einer neu entwickelten Neutronen-Tomographie-Methode hat ein HZB-Team erstmals den Verlauf von magnetischen Feldlinien im Innern von Materialien abbilden können. Die „Tensorielle Neutronen-Tomographie“ verspricht neue Einblicke in Supraleiter, Batterie-Elektroden und andere Energiematerialien. [...]
  • <p>Darstellung des Prinzips einer Silizium-Multiplikatorsolarzelle mit organischen Kristallen<br /></p>
    Science Highlight
    02.10.2018
    HZB-Forscher finden Weg, die Wirkungsgrad-Grenze für Silizium-Solarzellen zu erhöhen
    Der Wirkungsgrad einer Solarzelle ist eine ihrer wichtigsten Kenngrößen. Er gibt an, wieviel Prozent der eingestrahlten Sonnenenergie in elektrische Energie umgewandelt wird. Die theoretische Grenze für Silizium-Solarzellen liegt aufgrund physikalischer Materialeigenschaften bei 29,3 Prozent. Im Fachjournal Materials Horizons beschreiben Forscher des Helmholtz-Zentrum Berlin (HZB) zusammen mit internationalen Kollegen, wie diese Grenze aufgehoben werden kann. Der Trick: sie bauen organische Schichten in die Solarzelle ein. Diese wandeln die Energie der hochenergetischen Photonen (grünes und blaues Licht) so um, dass sich die Stromausbeute in diesem Energiebereich verdoppelt. [...]
  • <p>Die Computersimulation zeigt, wie sich nach Anregung mit einem Laser in der Siliziumschicht mit Lochmuster das elektromagnetische Feld verteilt. Hier bilden sich Streifen mit lokalen Feldmaxima aus, so dass Quantenpunkte besonders stark leuchten. Bild. C. Barth/HZB</p>
    Science Highlight
    28.09.2018
    Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren
    Photonische Nanostrukturen erhöhen nicht nur die Effizienz von Solarzellen, sondern verbessern auch die Wirksamkeit von optischen Sensoren, die zum Beispiel als Krebsmarker verwendet werden. Mit Computersimulationen und dem Einsatz von maschinellem Lernen hat nun ein Team am HZB gezeigt, wie sich das Design solcher Nanostrukturen gezielt optimieren lässt. Die Ergebnisse sind in Communications Physics publiziert. [...]
  • <p>Der Laserpuls (rot) erzeugt W&auml;rme im D&uuml;nnschichtsystem. Mit zeitaufgel&ouml;sten R&ouml;ntgendiffraktionsexperimenten l&auml;sst sich analysieren, wie sich die W&auml;rme verteilt. </p>
    Science Highlight
    21.08.2018
    Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen
    Ein Forscherteam aus dem Helmholtz-Zentrum Berlin (HZB) und der Universität Potsdam hat den Wärmetransport in einem Modellsystem aus nanometerdünnen metallischen und magnetischen Schichten untersucht. Ähnliche Systeme sind Kandidaten für künftige hocheffiziente Datenspeicher, die durch Laserpulse lokal erhitzt und neu beschrieben werden können (Heat-Assisted Magnetic Recording). Experimente mit kurzen Röntgenpulsen zeigten nun, dass sich in dem Modellsystem die Wärme hundertmal langsamer als erwartet verteilt. Die Ergebnisse sind in Nature Communications publiziert. [...]
  • <p>Grau sind die Alu-Granulate dargestellt, bunt die Poren. Wie sich diese Poren mit der Zeit vergr&ouml;&szlig;ern, zeigt die Serie von 3D-Tomographien. </p>
    Science Highlight
    08.08.2018
    Weltrekord: Schnellste 3D-Tomographien an BESSY II
    Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit einer besonderen, schnellen Optik kombiniert. Damit konnten sie die Porenbildung in Metall-Körnern während des Aufschäumens mit 25 Tomographien pro Sekunde dokumentieren – ein Weltrekord. [...]
  • <p>Die untersuchte Perowskit-Zelle hat bereits eine Fl&auml;che von 1 cm<sup>2</sup>. </p>
    Science Highlight
    01.08.2018
    Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz
    In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen verloren. Rekombination an Defekten im Inneren der Perowskit-Schicht begrenzt  dagegen die Leistungsfähigkeit der Zellen gegenwärtig nicht. Diese interessante Einsicht konnten Teams der Universität Potsdam und am Helmholtz-Zentrum Berlin (HZB)  nun mit quantitativ äußerst genauen Photolumineszenz-Messungen an 1 cm2 großen Perowskit-Absorberschichten gewinnen. Ihre Ergebnisse tragen zur gezielten  Verbesserung von Perowskit-Solarzellen bei und sind nun in Nature Energy publiziert. [...]
  • <p>Auch bei der Photosynthese spielen Mangan-Verbindungen als Katalysatoren eine Rolle. </p>
    Science Highlight
    31.07.2018
    Elektronische Prozesse während der Katalyse mit neuartigem Röntgen-Spektroskopie-Verfahren beobachtet
    Einem internationalen Team ist an BESSY II ein Durchbruch gelungen. Erstmals konnten sie elektronische Prozesse an einem Übergangsmetall im Detail  untersuchen und aus den Messdaten zuverlässige Rückschlüsse auf deren katalytische Wirkung  ziehen. Ihre Ergebnisse sind hilfreich, um gezielt katalytische Systeme, in deren Zentren Übergangmetalle stehen, für zukünftige Anwendungen zu entwickeln. Die Arbeit ist nun in Chemical Science, dem Open Access Journal der Royal Society of Chemistry, veröffentlicht. [...]
  • <p>Auch Fossilien wie dieser 250 Mio. Jahre alte Lystrosaurus-Sch&auml;del lassen sich mit Neutronentomographie zerst&ouml;rungsfrei untersuchen. </p>
    Science Highlight
    05.06.2018
    Neutronentomographie: Einblick ins Innere von Zähnen, Wurzelballen, Batterien und Brennstoffzellen
    Einen umfassenden Überblicksbeitrag über bildgebende Verfahren mit Neutronen hat ein Team am Helmholtz-Zentrum Berlin (HZB) und der Europäischen Spallationsquelle ESS im renommierten Fachjournal Materials Today (Impaktfaktor 21,6) publiziert.  Die Autoren berichten über die neuesten Entwicklungen in der Neutronentomographie. An Beispielen zeigen sie die Einsatzmöglichkeiten dieser zerstörungsfreien Methode auf. Neutronentomographien haben Durchbrüche in der Zahnmedizin, Kunstgeschichte, Pflanzenphysiologie, Paläobiologie, Batterieforschung oder Werkstoffanalyse ermöglicht. [...]
  • <p>Die Einblendung zeigt den typischen Aufbau eines Kristalls mit  Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet. </p>
    Science Highlight
    29.03.2018
    Solarzellen aus Kesteriten: Germanium statt Zinn verspricht bessere optoelektronische Eigenschaften
    Durch gezielte Veränderungen der Zusammensetzung von Kesterit-Halbleitern lässt sich ihre Eignung als Absorbermaterial in Solarzellen verbessern. Wie ein Team am Helmholtz-Zentrum Berlin zeigte, gilt dies besonders für Kesterite, in denen Zinn durch Germanium ersetzt wurde. Die Wissenschaftlerinnen und Wissenschaftler untersuchten die Proben mit Hilfe von Neutronenbeugung am BER II und weiteren Methoden. Die Arbeit wurde für das Titelblatt der Zeitschrift CrystEngComm ausgewählt. [...]
  • <p>Mit Sonnenlicht k&ouml;nnen PCN-Nanolagen Wasser aufspalten. </p>
    Science Highlight
    28.02.2018
    Solarer Wasserstoff: Nanostrukturierung erhöht die Effizienz von Metall-freien Photokatalysatoren um den Faktor Elf
    Polymere Kohlenstoffnitride entfalten unter Sonnenlicht eine katalytische Wirkung, die sich für die Produktion von solarem Wasserstoff nutzen lässt. Allerdings ist die Effizienz dieser günstigen, metallfreien Materialien sehr gering. Durch einen einfachen Prozess ist es nun gelungen, ihre katalytische Wirkung um den Faktor elf zu erhöhen. Dies zeigte nun ein Team an der Tianjin-University in China mit einer Gruppe am Helmholtz-Zentrum Berlin. Die Arbeit wurde im Journal Energy & Environmental Science veröffentlicht. [...]
  • <p>Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Au&szlig;enfl&auml;chen eingef&auml;rbt. </p>
    Science Highlight
    22.02.2018
    Leuchtende Nanoarchitekturen aus Galliumarsenid
    Einem Team am HZB ist es gelungen, Nanokristalle aus Galliumarsenid auf winzigen Säulen aus Silizium und Germanium aufzuwachsen. Damit lassen sich auf der Basis von Siliziumchips sehr effiziente Bauelemente in für die Optoelektronik interessanten Frequenzbereichen realisieren. [...]
  • <p>Ein normaler HB-Bleistift und B&uuml;ropapier reichen aus, um - kombiniert mit einem leitf&auml;higen Kunststofflack- ein thermoelektrisches Element zu bauen. Bild. HZB</p>
    Science Highlight
    16.02.2018
    Verborgene Talente: Mit Bleistift und Papier Wärme in Strom umwandeln
    Thermoelektrische Materialien können Wärmeunterschiede zur Stromerzeugung nutzen. Nun gibt es eine preiswerte und umweltfreundliche Lösung, um sie mit einfachsten Zutaten herzustellen: Ein normaler Bleistift, Kopierpapier und ein leitfähiger Kunststofflack reichen aus, um eine Temperaturdifferenz über den thermoelektrischen Effekt in Strom umzuwandeln. Dies hat nun ein Team am Helmholtz-Zentrum Berlin demonstriert. [...]
  • <p>Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfl&auml;che werden Elektronen emittiert, die mit ARPES gemessen werden. Links betr&auml;gt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten l&auml;sst sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfl&auml;che leitend. </p>
    Science Highlight
    06.02.2018
    Streitfrage in der Festkörperphysik nach 40 Jahren entschieden
    Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass  Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt. [...]
  • <p>Vereinfachter Querschnitt durch eine Perowskit-Solarzelle: Die Perowskit-Schicht bedeckt nicht die gesamte Fl&auml;che, sondern weist &bdquo;L&ouml;cher&ldquo; auf. Allerdings bildet sich dort eine Schutzschicht, die einen Kurzschluss verhindert, zeigte das Team um Marcus B&auml;r.</p>
    Science Highlight
    15.01.2018
    Perowskit-Solarzellen: Es muss gar nicht perfekt sein
    Untersuchungen an BESSY II zeigen, warum selbst „löchrige“ Perowskit-Filme gut funktionieren [...]
  • <p>Ein kurzer Laserpuls trifft auf die Dysprosium-Probe und ver&auml;ndert deren magnetische Ordnung. Dies geschieht deutlich rascher, wenn das Dysprosium vorher antiferromagnetisch (links) war als wenn es ferromagnetisch war (rechts). </p>
    Science Highlight
    06.11.2017
    Informationstechnologien der Zukunft: Antiferromagnetisches Dysprosium zeigt magnetisches Schalten mit weniger Energie
    HZB-Wissenschaftler haben einen Mechanismus identifiziert, mit dem sich möglicherweise schnellere und energiesparendere magnetische Speicher realisieren lassen. Sie verglichen, wie unterschiedliche magnetische Ordnungen im Seltenerd-Metall Dysprosium auf einen kurzen Laserpuls reagieren. Dabei fanden sie heraus, dass sich die magnetische Ordnung sehr viel schneller und mit deutlich geringerem Energieeinsatz verändern lässt, wenn die magnetischen Momente der einzelnen Atome nicht alle in dieselbe Richtung weisen (ferromagnetisch), sondern gegeneinander verdreht sind (antiferromagnetisch). Die Studie erschien am 6.11.2017 in der Fachzeitschrift Physical Review Letters und schmückt auch die Titelseite. [...]
  • <p>Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandl&uuml;cke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II. </p>
<p></p>
    Science Highlight
    17.10.2017
    Topologische Isolatoren: Neuer Phasenübergang entdeckt
    Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen. [...]
  • <p>Die Rastertunnelmikroskopie zeigt: Graphen w&ouml;lbt sich &uuml;ber den Goldclustern und bildet ein regelm&auml;&szlig;iges Muster, das an das Polster eines Chsterfield-Sofas erinnert. </p>
    Science Highlight
    18.09.2017
    Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
    Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren. [...]
  • <p><!-- [if !mso]>

<![endif]--></p>
<p>Die Rasterelektronenmikrographie zeigt eine 10 Mikrometer gro&szlig;e fl&auml;chige Abscheidung. Die Silberkristalle sind etwa 100 Nanometer gro&szlig;. </p>
<p></p>
    Science Highlight
    24.07.2017
    Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
    Ein internationales Team hat erstmals Nanostrukturen aus Silber mit einem Elektronenstrahl auf ein Substrat „geschrieben“. Silbernanostrukturen zeichnen sich durch ihre Fähigkeit aus, sichtbares Licht auf der Nanoskala zu konzentrieren. Mögliche Anwendungen liegen in der Sensorik (Nachweis von Molekülen), aber auch in der Datenverarbeitung mit Licht. [...]
  • <p>In diesem optischen Zonenschmelzofen enstehen gro&szlig;e Einkristalle. </p>
    Nachricht
    19.06.2017
    Neu am Campus Wannsee: CoreLab Quantenmaterialien
    Das Helmholtz-Zentrum Berlin erweitert sein Angebot an CoreLabs für die Forschung an Energiematerialien. Zusätzlich zu den fünf bereits etablierten CoreLabs wurde nun ein CoreLab für Quantenmaterialien eingerichtet. Ein Forscherteam vom HZB-Institut für Quantenphänomene in neuen Materialien betreut das CoreLab mit dem modernen Gerätepark. Das CoreLab steht auch Messgästen aus anderen Forschungseinrichtungen offen.   [...]
  • Nachricht
    14.06.2017
    Neues Labor für Elektrochemische Grenzflächen an BESSY II
    Das Helmholtz-Zentrum Berlin (HZB) baut mit der Max-Planck-Gesellschaft (MPG) ein gemeinsames Labor für elektrochemische Untersuchungen an Fest-Flüssig-Grenzflächen auf. Das „Berlin Joint Lab for Electrochemical Interfaces“, kurz BElChem, nutzt Röntgenlicht von BESSY II, um Materialien für die regenerative Energiegewinnung zu analysieren. [...]
  • <p>Die Ti<sub>4</sub>O<sub>7</sub>-Nanopartikel weisen gro&szlig;e Poren auf, zeigt die Elektronenmikroskopieaufnahme. <strong><a href="http://onlinelibrary.wiley.com/doi/10.1002/adfm.201701176/abstract;jsessionid=F0393DC7BB4AAE76B24CFD675C8CC430.f03t04   " class="Extern">adfm.201701176</a></strong></p>
    Science Highlight
    17.05.2017
    Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
    Ein Team am Helmholtz-Zentrum Berlin (HZB) hat erstmals Nanopartikel aus einer Titanoxidverbindung (Ti4O7) mit extrem großen Oberflächen hergestellt und in Lithium-Schwefelbatterien als Kathodenmaterial getestet. Das hochporöse Nanomaterial besitzt eine hohe Speicherkapazität, die über viele Ladezyklen annähernd stabil bleibt.  [...]
  • <p>Die Experimente zeigen: Lichtpulse k&ouml;nnen Wasserstoffkerne abl&ouml;sen, ohne weitere Bindungen im Molek&uuml;l zu zerst&ouml;ren. </p>
<p></p>
    Science Highlight
    07.04.2017
    Protonentransfer: Forscher finden molekularen Schutzmechanismus gegen lichtinduzierte Schädigungen
    Ein internationales Team aus Forschenden des Helmholtz-Zentrum Berlin (HZB) sowie aus Schweden und den USA hat einen Mechanismus untersucht, der Biomoleküle wie die Erbsubstanz DNA gegen Schädigung durch Licht schützt. Sie beobachteten, wie die Energie der einfallenden Photonen im Molekül aufgenommen wird ohne wichtige Bindungen des Biomoleküls zu beschädigen. Die Experimente fanden am Freie Elektronen-Laser LCLS in Kalifornien und an der Synchrotronquelle BESSY II des HZB in Berlin statt, wo mit der Methode der resonanten inelastischen Röntgenstreuung, RIXS, ein sehr empfindliches Messverfahren bereit steht. [...]
  • <p>Nanostrukturen fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials. </p>
    Science Highlight
    14.03.2017
    Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
    Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte. [...]
  • <p>Die  PFIA-Molek&uuml;le ordnen sich mit ihrem wasserabweisenden R&uuml;ckgrat (schwarze Linie) so an, dass die wasserfreundlichen Seitenketten zueinander zeigen und nanometergro&szlig;e Wasserkan&auml;le bilden: Jede Seitenkette besitzt dabei zwei Andockstellen (gelbe und rote Kreise) f&uuml;r Wasserstoff-Ionen (H+). Diese Andockstellen bestehen aus S&auml;uregruppen, die in der Lupe gezeigt werden.  </p>
    Science Highlight
    19.12.2016
    Brennstoffzellen mit PFIA-Membranen:
    Experimente an BESSY II zum Wassermanagement geben Hinweise auf weitere Optimierung von Brennstoffzellen  [...]
  • <p>Das neue Energy Materials in situ Laboratory (EMIL) mit direktem Zugang zum R&ouml;ntgenlicht von BESSY II wurde am 31. Oktober er&ouml;ffnet. </p>
    Nachricht
    21.11.2016
    Forschen für die Energiewende: EMIL@BESSY II startklar für das Kopernikus Projekt „Power-to-X“
    Das Speichern von Überschussstrom aus Solar- und Windenergie zählt zu den großen Herausforderungen der Energiewende. Daher hat das Bundesministerium für Bildung und Forschung (BMBF) das Kopernikus-Projekt „Power-to-X“ (P2X) aufgesetzt, um Forschungsprojekte zur Umwandlung von elektrischer Energie aus Sonne und Wind in chemische Grundstoffe, gasförmige Energieträger und Kraftstoffe voran zu bringen. An dem Forschungsvorhaben beteiligt sich auch das Helmholtz-Zentrum Berlin. Mit dem jetzt eröffneten Laborkomplex EMIL@BESSY II stehen einzigartige Synthese- und Analytiktools mit direktem Zugang zum Röntgenlicht von BESSY II zur Verfügung. Insgesamt sind 17 Forschungseinrichtungen, 26 Industrieunternehmen sowie drei zivilgesellschaftliche Organisationen eingebunden. In der ersten Entwicklungsphase fördert das BMBF das Projekt mit 30 Millionen Euro. [...]
  • <p>Die R&ouml;ntgenreflektivit&auml;t des Mo/Si Multilagenspiegels wird durch den um &Delta;<em>t</em> zeitversetzten Laserpuls stark ver&auml;ndert. </p>
    Science Highlight
    14.11.2016
    Methodenentwicklung an BESSY II: Standard-Röntgenspiegel nun auch für ultraschnelle Experimente einsetzbar
    Elektronische, magnetische und strukturelle Prozesse in Energiematerialien finden auf Zeitskalen zwischen Femtosekunden und 100 Pikosekunden statt. Um solche Prozesse zu beobachten, wird die Probe mit einem ersten Lichtpuls angeregt und dann mit einem zeitlich verzögerten Abfragepuls „abgetastet“. Dabei ist es allerdings entscheidend, dass der zeitliche Überlapp beider ultrakurzen Lichtpulse exakt bekannt ist. Nun hat ein Team vom HZB und der Universität Potsdam eine neue und überraschend simple Lösung gefunden, um auch bei Lichtpulsen mit unterschiedlichen Wellenlängen, z.B. aus dem Infrarot- und Röntgenbereich, den zeitlichen Überlapp genau zu messen: Sie setzen dafür einen Standard-Röntgenspiegel ein, der auch sonst in BESSY II  verwendet wird. Der Spiegel besteht aus alternierenden Nanolagen von Molybdän und Silizium, die durch Laseranregung dynamisch ihre Dicke ändern, was sich auf die Reflektivität des Spiegels auswirkt. [...]
  • <p>Ein Laserpuls versetzt die gel&ouml;sten Molek&uuml;le in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. Solche Laserexperimente sind nur im Ultrahochvakuum m&ouml;glich. </p>
    Science Highlight
    19.10.2016
    Methodenentwicklung am HZB: Ionische Flüssigkeiten vereinfachen Laserexperimente mit flüssigen Proben
    Ein HZB-Team hat eine neue Methode entwickelt, um Moleküle in Lösung mit Laserexperimenten analysieren zu können. Dies war bisher schwierig, weil sich dafür die Probe im Vakuum befinden muss, Flüssigkeiten unter Vakuum aber verdampfen.  Dem Team ist es nun gelungen, das Lösungsmittel durch eine ionische Flüssigkeit zu ersetzen, die im Vakuum nicht verdampft: So können die  Moleküle mit einem Laserpuls angeregt werden, und das Verhalten der angeregten Zustände im Vakuum gemessen werden. Dies gibt Aufschluss über physikalische und chemische Prozesse in neuartigen flüssigen Energie-Materialien, wie sie etwa in organischen Solarzellen oder Katalysatoren zum Einsatz kommen. [...]
  • <p>Unter dem Eisen-Nickel-Film befindet sich ein supraleitender Punkt (gestricheltes Quadrat). X-PEEM-Messungen zeigen die magnetischen Dom&auml;nen innerhalb der Eisen-Nickel-Legierung vor (links) und nach dem Einschreiben (rechts). In dieser Probe ist ein Monopol entstanden (Pfeile, rechts). </p>
    Science Highlight
    10.10.2016
    Zukünftige Informationstechnologien: Neues Materialsystem ermöglicht lokale magnetische Monopole - Ausblick auf energieeffiziente Datenspeicher
    Ein internationales Team hat an BESSY II einen neuen Weg gefunden, um exotische magnetische Muster wie Monopole oder Wirbel in einer dünnen magnetischen Schicht zu erzeugen. Dies eröffnet neue Möglichkeiten für schnelle und energieeffiziente Datenspeicher. Das neue Materialsystem besteht aus einer supraleitenden Mikrostruktur, die mit einem extrem dünnen ferromagnetischen Film beschichtet ist. Ein kurzfristig angelegtes äußeres Magnetfeld regt Ströme in den supraleitenden Bereichen an. Durch diese Ströme werden die gewünschten magnetischen Muster stabil in die ferromagnetische Dünnschicht eingeschrieben. Die Ergebnisse sind in Advanced Science publiziert. [...]
  • <p>SEM &ndash; Abbildung eines metallischen Nano Netzwerks in (links) periodischer  Aufbau und  eine optische Abbildung einer fraktalen Struktur (rechts). </p>
    Science Highlight
    27.09.2016
    Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern
    Nano-dimensionierte Metalldrähte finden zunehmend Interesse als leitfähige Elemente für die Herstellung transparenter Elektroden. Zum Einsatz kommen solche transparenten Elektroden in Solarzellen oder Touchscreen-Panels. Zu den wichtigsten Parametern einer Elektrode für die Anwendung in der Photovoltaik gehört neben einer hohen elektrischen Leitfähigkeit eine exzellente optische Durchlässigkeit. Ein internationales Team um den HZB-Wissenschaftler Prof. Dr. Michael Giersig hat kürzlich demonstriert, dass metallische Netze, die fraktal-ähnliche Nanostrukturen besitzen, andere metallische Netze in ihrer Nützlichkeit für die genannten Anwendungen übertreffen. Diese Ergebnisse wurden jetzt in der jüngsten Ausgabe des renommierten Journals Nature Communications veröffentlicht. [...]
  • <p>&Uuml;ber hundert Expertinnen und Experten tauschten sich auf der internationalen Konferenz zu "Dynamic Pathways in Multidimensional Landscapes" aus, die im September in Berlin stattgefunden hat. </p>
    Nachricht
    19.09.2016
    VI-Konferenz "Dynamic Pathways in Multidimensional Landscapes 2016"
    Mitten in Berlin, gegenüber dem Pergamonmuseum, fand letzte Woche die Internationale Konferenz "Dynamic Pathways in Multidimensional Landscapes 2016" statt. Über 100 Expertinnen und Experten kamen vom 12. – 16. September 2016 im Magnus-Haus der Deutschen Physikalischen Gesellschaft zusammen. [...]
  • <p>Lithium-Ionen wandern durch den Elektrolyten (gelb) in die Schicht aus kristallinem Silizium (c-Si) ein. Im Lauf der Beladung bildet sich eine 20 Nanometer d&uuml;nne Schicht (rot) in der Silizium-Elektrode, die extrem viele Lithium-Atome aufnimmt. Skizze: HZB</p>
    Nachricht
    08.08.2016
    Energie speichern mit Silizium-Dünnschichten - Neue Hinweise für das Design von Silizium-Lithium-Akkus durch Neutronenmessungen
    Lithium-Ionen-Akkus könnten ihre Kapazität theoretisch versechsfachen, wenn ihre Anode statt aus Graphit aus Silizium bestünde. Ein HZB-Team hat erstmals mit Neutronenmessungen detailliert beobachtet, wie Lithium-Ionen in Silizium einwandern. Ihre Arbeit zeigt, dass schon extrem dünne Silizium-Schichten ausreichen, um eine maximale Beladung mit Lithium zu ermöglichen. Die Arbeit ist in der Zeitschrift ACSnano der American Chemical Society veröffentlicht. [...]
  • <p>Fabian Weber (rechts) untersucht nun im Team von Dr. Annika Bande (links) die Dynamik von Elektronen-Prozessen in Graphen-Oxid-Quantenpunkten. Solche Quantenpunkte k&ouml;nnten als Katalysatoren die solare Wasserspaltung effizienter machen. Mit den theoretischen Modellierungen von Weber lassen sich aus den experimentellen Daten der Gruppe um Dr. Tristan Petit sehr viel mehr Informationen gewinnen. </p>
    Nachricht
    01.08.2016
    Zwei Freigeist-Fellows am HZB verflechten ihre Forschung
    Am HZB-Institut für Methoden der Materialentwicklung forschen zwei Freigeist-Fellows, die von der VolkswagenStiftung gefördert werden: Die theoretische Chemikerin Dr. Annika Bande modelliert schnelle Elektronen-Prozesse und Dr. Tristan Petit untersucht Nanoteilchen aus Kohlenstoff. Nun konnte Annika Bande mit einem  Modulantrag bei der VolkswagenStiftung zusätzlich 150.000 Euro für eine weitere dreijährige Doktorandenstelle einwerben. Die Doktorarbeit wird beide Freigeist-Vorhaben miteinander verknüpfen. [...]
  • <p>Ein Ausschnitt aus dem Kristallgitter der Probe verdeutlicht, dass die Spins widerspr&uuml;chlichen Anforderungen ausgesetzt sind. Die gr&uuml;nen und roten Balken zwischen Gitterpl&auml;tzen symbolisieren ferromagnetische Wechselwirkungen. Die blauen Balken dagegen die antiferromagnetischen. </p>
    Science Highlight
    25.07.2016
    Exotischer Materiezustand: "Flüssige" Quantenspins bei tiefsten Temperaturen beobachtet
    Ein Team am HZB hat experimentell eine sogenannte Quanten-Spinflüssigkeit in einem Einkristall aus Kalzium-Chrom-Oxid nachgewiesen. Dabei handelt es sich um einen neuartigen Materiezustand. Das Besondere an dieser Entdeckung: Nach gängigen Vorstellungen war das Quantenphänomen in diesem Material gar nicht möglich. Nun liegt eine Erklärung vor. Die Arbeit erweitert das Verständnis von kondensierter Materie und könnte auch für die zukünftige Entwicklung von Quantencomputern von Bedeutung sein. Die Ergebnisse sind nun in Nature Physics veröffentlicht. [...]
  • <p>Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen. </p>
    Science Highlight
    16.06.2016
    Graphen auf Halbleitersubstrat als Kandidat für Spintronik
    Graphen auf Siliziumkarbid könnte ein interessantes Materialsystem für künftige spintronische Bauelemente werden.  Durch eingeschleuste Goldatome kann die Spin-Bahn-Wechselwirkung punktuell so stark erhöht werden, dass sich die Spins kontrollieren lassen. Dies zeigen erste Ergebnisse an BESSY II, die nun in den Applied Physics Letters veröffentlicht sind.  [...]
  • <p>Die Membran besitzt Poren im Abstand von 105 Nanometern, die als Haftstellen f&uuml;r die magnetischen Dom&auml;nenw&auml;nde wirken. </p>
    Science Highlight
    14.06.2016
    Spintronik: Effizientes Materialsystem für die wärmeunterstützte Datenspeicherung
    Ein HZB-Team hat Dünnschichten aus Dysprosium-Kobalt über einer nanostrukturierten Membran an BESSY II untersucht. Sie zeigten, dass eine Erwärmung auf nur 80 Grad Celsius ausreicht, um die Magnetisierung von winzigen Nano-Regionen neu auszurichten. Dies ist weit weniger als bislang für die wärmeunterstützte magnetische Datenspeicherung (Heat Assisted Magnetic Recording) nötig war. Ziel dieser Forschung sind schnelle und energieeffiziente Datenspeicher, die mehr Informationen auf kleinster Fläche speichern. Die Ergebnisse sind in dem neuen Fachjournal Physical Review Applied veröffentlicht. [...]
  • <p>Durch die Kombination von zwei unterschiedlichen Methoden (RIXS und Fluoreszenzspektroskopie) konnte das Team die elektronischen Zust&auml;nde der Probe im Detail vermessen. </p>
    Science Highlight
    11.05.2016
    Chemie von Eisen in wässriger Lösung entschlüsselt
    Ein HZB-Team hat an der Synchrotronquelle BESSY II zwei unterschiedliche Methoden kombiniert, um mehr Informationen zur Chemie von Übergangsmetallverbindungen in Lösung zu gewinnen. Solche Verbindungen können als Katalysatoren in Energiematerialien gewünschte Reaktionen befördern, sind aber bislang noch nicht vollständig verstanden.  Sie zeigten an einem einfachen Modellsystem aus Eisen in Wasser, wie sich aus dem systematischen Vergleich sämtlicher elektronischer Wechselwirkungsprozesse ein detailliertes Bild der elektronischen Zustände ermitteln lässt. Die Ergebnisse sind im Open Access Journal von Nature, den Scientific Reports, publiziert. [...]
  • Nachricht
    10.05.2016
    Helmholtz Innovation Labs: Neues Förderinstrument der Helmholtz-Gemeinschaft
    Das Helmholtz-Zentrum Berlin (HZB) erhält eine von sieben Projektförderungen und stärkt damit den Technologietransfer im Themenfeld Energiematerialien [...]
  • <p>Die Skizze zeigt die charakteristische Spin-Ausrichtung (Pfeile) von Elektronen in einem topologischen Isolator (unten). Ein zirkular polarisierter Laserpuls dreht die Spins aus der Oberfl&auml;chenebene der Probe heraus (Mitte). Dies l&auml;sst sich mit einem linear polarisierten zweiten Puls nachweisen (oben).</p>
    Science Highlight
    29.04.2016
    Spintronik für künftige energieeffiziente Informationstechnologien: Spin-Ströme in Topologischen Isolatoren kontrolliert
    Ein internationales Team um den HZB-Forscher Jaime Sánchez-Barriga hat gezeigt, wie sich in Proben aus einem Topologischen Isolator-Material spinpolarisierte Ströme gezielt in Gang setzen lassen. Zudem konnten sie die Ausrichtung der Spins in diesen Strömen kontrollieren. Damit demonstrierten sie, dass sich diese Materialklasse dafür eignet, mithilfe von Spins Daten zu verarbeiten. Die Arbeit ist in der renommierten Zeitschrift Physical Review B erschienen und wurde als "Editor's Suggestion" ausgezeichnet. [...]
  • Nachricht
    04.04.2016
    Schwerpunktprogramm zu Topologischen Isolatoren geht in die zweite Förderperiode
    Die Bewerber um Fördermittel für Forschung an Topologischen Isolatoren haben sich am 15. und 16. Februar am HZB in Adlershof getroffen. Es handelt sich um die zweite Förderperiode für das Schwerpunktprogramm SPP 1666 der Deutschen Forschungsgemeinschaft, die Mitte 2016 bis 2019 läuft. In Schwerpunktprogrammen bringen Forscher aus ganz Deutschland ihre jeweilige Expertise ein.
    [...]
  • <p>Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine d&uuml;nne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schlie&szlig;lich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (gr&uuml;n) in Kontakt kommen. </p>
    Science Highlight
    21.03.2016
    Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”
    Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Die so hergestellte Hybridstruktur zeigt als Photoanode für die Sauerstoffentwicklung Stromdichten von über als 15 mA/cm2. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht. [...]
  • <p>Das Team konnte erstmals mit der Methode der inelastischen R&ouml;ntgenstreuung beobachten, wie der Aufbau von Wasserstoffbr&uuml;cken die C=O Bindung im Azeton-Molek&uuml;l ver&auml;ndert.  </p>
<p></p>
    Science Highlight
    16.03.2016
    Die Vermessung der Chemie: Lokaler Fingerabdruck von Wasserstoffbrücken-Bindungen experimentell erfasst
    Ein Team aus dem Helmholtz-Zentrum Berlin konnte nun erstmals messen, wie neue Verbindungen zwischen Molekülen diese beeinflussen: Sie haben aus Messdaten an der Swiss Lightsource des Paul-Scherrer-Instituts die „Energielandschaft“ von Azeton-Molekülen rekonstruiert und so experimentell den Aufbau von Wasserstoffbrücken zwischen Azeton- und Chloroform-Molekülen nachgewiesen. Die Ergebnisse sind in Nature Scientific Reports veröffentlicht  und helfen, grundlegende Phänomene der Chemie zu verstehen. [...]
  • <p>Mehr &uuml;ber die Arbeit von Galina Gurieva, Franziska Huschmann und Alex Redinger finden Sie <a href="https://www.helmholtz-berlin.de/angebote/jobskarriere/postdocs/postdoc-of-the-month_en.html" class="Extern">hier. </a></p>
    Nachricht
    05.02.2016
    Webtipp: Postdoc-Initiative stellt Postdoc des Monats vor
    Was haben Galina Gurieva, Franziska Huschmann und Alex Redinger gemeinsam? Sie forschen als Postdoktoranden am HZB. Um sich besser zu vernetzen, stellt die Postdoc-Initiative des HZB jeden Monat einen Postdoktoranden im Internet vor. Sie beschreiben auf der Webseite kurz, woran sie arbeiten und welche Instrumente sie am HZB nutzen oder betreuen. Und damit man sich ihre Arbeit besser vorstellen kann, gibt es immer Fotos von den Beamlines, Laboren und Geräten. Hier geht es zur Seite. [...]
  • <p>Die Skizze zeigt den Aufbau der beiden Metalloxidschichten. Die interessanten neuen Eigenschaften zeigen sich genau an der Grenzfl&auml;che. </p>
    Science Highlight
    04.02.2016
    Sandwiches aus Metalloxiden: Wie sich Eigenschaften der Grenzflächen manipulieren lassen
    Eine französisch-deutsche Kooperation hat ein Schichtsystem aus Übergangsmetalloxiden an BESSY II untersucht. Dabei entdeckten die Wissenschaftler eine neue Möglichkeit, um Eigenschaften der Grenzfläche gezielt zu verändern, zum Beispiel den Ladungstransfer oder die magnetischen Eigenschaften. Möglicherweise könnte man damit sogar neue Formen der Hochtemperatur-Supraleitung erzeugen. [...]
  • <p>Preistr&auml;ger des Helmholtz-Doktorandenpreises 2015 mit Otmar D. Wiestler (Mitte), Pr&auml;sident der Helmholtz-Gemeinschaft, und Stephanie Dittmer (rechts), Bereichsleiterin Strategie/ Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft, auf dem Neujahrsempfang 2016. Foto: Simone M. Neumann/helmholtz</p>
    Nachricht
    28.01.2016
    Matthias May mit dem Doktorandenpreis der Helmholtz-Gemeinschaft ausgezeichnet
    Dr. Matthias May erforschte in seiner Promotion am Helmholtz-Zentrum Berlin (HZB), wie man mit Sonnenlicht noch effizienter Wasser spalten und in Form von Wasserstoff speichern kann. Für seine Arbeit erhielt er am 27. Januar 2016 den mit 5.000 Euro dotierten Doktorandenpreis der Helmholtz-Gemeinschaft. May forscht seit Januar 2016 als Postdoktorand an der Universität Cambridge. [...]
  • <p>Wie sich die Kristallite in einer CuInSe<sub>2</sub>-D&uuml;nnschicht orientieren, l&auml;sst sich auch mit Raman-Mikrospektroskopie kartieren. </p>
    Science Highlight
    18.12.2015
    Alternative Methode, um Mikrostrukturen in Polykristallen darzustellen
    Auch mit Raman-Mikrospektroskopie  lässt sich ermitteln, wie Kristallorientierungen in polykristallinen Materialien über größere Bereiche verteilt sind. Dieses Verfahren kann als Alternative zur Rückstreuelektronenbeugung im Rasterelektronenmikroskop herangezogen werden. Dass beide Verfahren auf Flächen von mehreren hundert Quadratmikrometern zu vergleichbaren Ergebnissen führen, hat nun ein Team aus dem Helmholtz-Zentrum Berlin und der Bundesanstalt für Materialforschung (BAM) demonstriert. [...]
  • <p>Nanostrukturen aus Silizium unter dem Rasterelektronenmikroskop. Der Durchmesser der Nanos&auml;ule betr&auml;gt 570 nm. Der Nanokegel dagegen verj&uuml;ngt sich von seinem oberen Durchmesser 940 nm bis zu 360 nm an der Basis. </p>
    Science Highlight
    26.11.2015
    „Flüstergalerie-Moden“ in Silizium-Nanokegeln verstärken die Lumineszenz
    Das Halbleitermaterial Silizium kann mit Hilfe von Nanostrukturierung ganz neue Talente entfalten. Dies zeigt nun ein Team am HZB-Institut „Nanoarchitekturen für die Energieumwandlung“ und am MPI für die Physik des Lichts. So geben Nanokegel aus Silizium nach Anregung mit sichtbarem Licht 200mal so viel Infrarotlumineszenz ab wie vergleichbar große Nanosäulen.  Modellierungen und experimentelle Ergebnisse zeigen: Die Kegel können durch ihre Geometrie Flüstergalerie-Moden für Infrarotwellen beherbergen, die die Silizium-Lumineszenz verstärken. Neue Anwendungen bis hin zu Nanolasern auf Siliziumbasis sind damit denkbar. [...]
  • <p>Die Skizze zeigt den Strahlverlauf durch die Probe an EDDI. Die Hochgeschwindigkeitskamera befindet sich &uuml;ber der Probe. </p>
    Nachricht
    19.11.2015
    Mikro- und Makroskopische Veränderungen im Innern von Materialien filmen:
    Die EDDI-Beamline an BESSY II leistet nun noch deutlich mehr: Seit Kurzem ist es möglich, auch hochaufgelöste dreidimensionale Bilder des mikroskopischen Aufbaus zu erhalten, und zwar mit einer Geschwindigkeit von bis zu vier Bildern pro Sekunde. Zeitgleich kann wie zuvor Röntgenbeugung (Energie-dispersive Diffraktion) durchgeführt werden, die Rückschlüsse auf die kristalline Struktur des Materials zulässt. [...]
  • <p>Das Bild veranschaulicht am Beispiel einer Autobahn, wie sich die zweite Spur um die erste Spur herumwindet.  Die Experimentatoren an den Beamlines k&ouml;nnten dann zuk&uuml;nftig entweder die dichte Folge von Lichtblitzen der ersten Spur nutzen oder aber die einzelnen Lichtblitze der zweiten Spur ausw&auml;hlen.  </p>
    Nachricht
    11.11.2015
    BESSY II mit zweiter Spur
    Der Berliner Elektronenspeicherring BESSY II lässt sich auch zweispurig betreiben, zeigte das Beschleuniger-Team am Helmholtz-Zentrum Berlin (HZB): Durch raffinierte Einstellungen an den Magnetoptiken können die Physiker eine zweite Spur erzeugen, auf der zusätzliche Elektronenpakete zirkulieren und Lichtblitze an die Experimentierstationen abgeben. Die Nutzergemeinschaft könnte so in Zukunft nach Bedarf entweder Lichtblitze der einen oder der anderen Spur für ihr Experiment auswählen. Der neu entwickelte Modus konnte bereits stabil eingestellt werden und  erste Tests an Experimentierstationen zeigen vielversprechende Resultate. Damit hat das HZB weltweit Neuland betreten und zugleich einen weiteren Meilenstein in Richtung des Zukunftsprojektes BESSY-VSR erreicht. [...]
  • <p>Markus Kubin vor seinem Poster. </p>
    Nachricht
    20.10.2015
    Posterpreis für Markus Kubin
    Auf der International Conference on X-Ray Absorption Fine Structure hat Markus Kubin bei der Postersession mit mehr als 300 Postern einen von fünf Posterpreisen erhalten. [...]
  • <p>Die SiO<sub>2</sub>-Nanoteilchen (schwarz) wurden direkt auf das Molybd&auml;n-Substrat (lila) aufgedruckt, das als R&uuml;ckkontakt dient. Die CIGSe-Schicht (rot) sowie weitere funktionale Schichten wurden auf das Nanomuster aufgewachsen. Weil diese Schichten extrem d&uuml;nn sind, dr&uuml;ckt sich das Muster der Nanoteilchen erkennbar bis zur oberen Schicht durch. Bild. G.Yin/HZB</p>
    Science Highlight
    15.10.2015
    Erstmals experimentell nachgewiesen: Wie Nanoteilchen ultradünne CIGSe-Solarzellen effizienter machen
    CIGSe-Solarzellen sind aus Kupfer, Indium, Gallium und Selen aufgebaut und können hohe Wirkungsgrade erreichen. Um wertvolles Indium einzusparen, soll die CIGSe-Schicht jedoch so dünn wie möglich sein. Dadurch sinkt allerdings der Wirkungsgrad sehr stark. Nun hat es ein Team am Helmholtz-Zentrum Berlin (HZB) geschafft, ultradünne CIGSe-Schichten von hoher Qualität herzustellen und mit winzigen Nanoteilchen auf der Rückseite der Zelle den Wirkungsgrad zu steigern. [...]
  • <p>Die Tandem-Solarzelle besteht (von unten nach oben, wie der Lichteinfall) aus der Perowskit-Schicht (schwarz, 200-300 nm), Spiro.OMeTAD (beige, 200-300 nm), Graphen (am Rand mit Gold kontaktiert), einem Glastr&auml;ger sowie der aSi-cSi-Schicht (lila). </p>
    Science Highlight
    02.10.2015
    Graphen als Frontkontakt für Silizium-Perowskit-Tandem-Solarzellen
    Ein Team aus dem Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin hat ein neues und raffiniertes Verfahren entwickelt, um die empfindliche Perowskit-Schicht erstmals mit Graphen zu beschichten. Mit anschließenden Messungen konnten sie belegen, dass Graphen ideal als Frontkontakt geeignet ist. [...]
  • <p>Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molek&uuml;len zu untersuchen. </p>
<p></p>
    Nachricht
    28.09.2015
    Katalyseforschung verstärkt: Helmholtz-Zentrum Berlin ist am neu bewilligten Einstein-Zentrum für Katalyse beteiligt
    Die Einstein-Stiftung fördert ab 2016 ein neues Einstein-Zentrum für Katalyse (EC²), an dem sich die Technische Universität Berlin (TU Berlin) und mehrere außeruniversitäre Einrichtungen aus Berlin beteiligen. Aus dem Helmholtz-Zentrum Berlin (HZB) wirkt Prof. Dr. Emad Aziz, Leiter des HZB-Instituts für Methoden der Materialforschung, am Aufbau der Einrichtung mit. Sein Team bringt insbesondere Expertise in der Analytik ultraschneller Prozesse bei katalytischen Reaktionen ein. [...]
  • <p>Sara J&auml;ckle hat gezeigt, dass sich an der Grenzfl&auml;che zwischen organischem Kontakt und n-dotiertem Silizium ein pn-&Uuml;bergang ausbildet. </p>
<p></p>
    Science Highlight
    17.08.2015
    Ladungstransport in hybriden Silizium-basierten Solarzellen
    Eine überraschende Erkenntnis bei organisch-anorganischen Hybrid-Solarzellen hat ein Team um Silke Christiansen gewonnen: anders als erwartet, entspricht der Übergang zwischen der organischen leitfähigen Kontaktschicht aus PEDOT:PSS und dem Silizium-Absorbermaterial nicht einem Metall-Halbleiter-Kontakt (Schottky-Kontakt), sondern einem pn-Übergang zwischen zwei Halbleitermaterialien. Ihre Ergebnisse sind nun in dem Nature-Journal Scientific Reports publiziert und können neue Wege aufzeigen, hybride Solarzellen zu optimieren. [...]
  • <p>Manuela G&ouml;belt kann die lokale Vernetzung aus REM-Aufnahmen der Elektrode am Rechner ermitteln. Foto: Bj&ouml;rn Hoffmann.</p>
<p></p>
    Science Highlight
    31.07.2015
    Transparentes, leitfähiges Netz aus verkapselten Silbernanodrähten – eine neuartige flexible Elektrode für die Optoelektronik
    Ein Team um Silke Christiansen hat eine transparente, hochleitfähige Elektrode für Solarzellen und andere optoelektronische Bauelemente entwickelt, die mit minimalem Materialaufwand auskommt. Sie besteht aus einem ungeordneten Netz aus Silbernanodrähten, das mit Aluminum-dotiertem Zinkoxid beschichtet ist. Die neuartige Elektrode benötigt knapp 70mal weniger Silber als konventionelle Silber-Gitterelektroden, besitzt aber eine vergleichbar gute Leitfähigkeit. [...]
  • <p>Die Illustration zeigt, wie sich an den Energiefl&auml;chen der Elektronen im reziproken Raum die Spins aus der Ebene herausdrehen. Dabei bildet sich eine Konfiguration, die an die Stacheln eines Igels erinnert. Illustration Thomas Splettst&ouml;&szlig;er/HZB</p>
    Science Highlight
    27.07.2015
    Spins in Graphen: ausgerichtet wie die Stachelns eines Igels
    HZB-Team weist fundamentale Eigenschaft des Elektronenspins in Graphen nach [...]
  • <p>Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfl&auml;che Perowskit/TiO<sub>2</sub> h&ouml;her ist als in der restlichen Schicht. </p>
    Science Highlight
    10.07.2015
    Inhomogene Chlorverteilung in Perowskit-Schichten
    Mit verschiedenen röntgenspektroskopischen Experimenten an BESSY II zeigte ein HZB-Team, dass sich Chlor in einer bestimmten Klasse von Perowskiten sehr ungleichmäßig verteilt: während an der Oberfläche Chlor nicht nachweisbar ist, findet man in tieferen Lagen, insbesondere an der Grenzfläche zum Substrat, eine signifikante Chlorkonzentration. Die Ergebnisse könnten Wege aufzeigen, bei der Herstellung der Schichten die Verteilung der Chloratome zu kontrollieren und dadurch die Effizienz von Perowskit-Dünnschicht-Solarzellen weiter zu steigern. [...]
  • <p>HZB-Gruppe bei der ICT/ECT2015. Von links nach rechts: Dr. Klaus Habicht (Leiter der Abteilung "Methoden zur Charakterisierung von Transportph&auml;nomenen in Energiematerialien"), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner</p>
    Nachricht
    07.07.2015
    HZB stellt Forschung an Thermoelektrika vor
    Die "International Conference on Thermoelectrics (ICT)" und die "European Conference on Thermoelectrics (ECT) " fanden in diesem Jahr vom 29.06.2015 bis zum 02.07.2015 in Dresden statt. Das HZB war bei diesem internationalen, multidisziplinären Treffen zum ersten Mal vertreten. Dabei präsentierte die HZB Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien" um Dr. Klaus Habicht ihre Forschung mit zwei Vorträgen und einem Poster. [...]
  • <p>Links ist die durchleuchtete Probe zu sehen, rechts die Magnetisierungsdom&auml;nen (rot-blaue Muster). Die Probe ist eine 20 Nanometer dicke Schicht, die zu einer R&ouml;hre mit zwei Windungen aufgewickelt wurde. Die R&ouml;hre besitzt einen Durchmesser von 5 Mikrometern und eine H&ouml;he von 50 Mikrometern. </p>
    Nachricht
    07.07.2015
    Neues Verfahren ermöglicht 3D-Auslesung von magnetischen Mustern
    Eine internationale Kooperation hat es geschafft, mit Synchrotronlicht komplexe Magnetisierungsmuster in gewickelten magnetischen Schichten dreidimensional auszulesen. Dieses Verfahren könnte interessant sein, um hochempfindliche Sensoren für Magnetfelder zu entwickeln, beispielsweise für die medizinische Diagnostik. Die Ergebnisse sind in Nature Communications publiziert. [...]
  • <p>Mit einem verbesserten Verfahren konnten diese Proben mit exakt definierten Anteilen aus Nickel und Kupfer hergestellt werden. Foto: M. Tovar/HZB</p>
    Nachricht
    06.07.2015
    Kristallstruktur und Magnetismus – neuer Einblick in die Grundlagen der Festkörperphysik
    HZB-Team entschlüsselt Zusammenhang zwischen magnetischen Wechselwirkungen und Verzerrungen der Kristallstruktur in einem geometrisch „frustrierten“ Spinell-System [...]
  • <p>Nano-Diamant-Materialien k&ouml;nnten helfen, Kohlendioxid zu wertvollen Brennstoffen weiterzuverarbeiten. Sonnenlicht soll sie als Katalysatoren aktivieren. </p>
    Nachricht
    02.07.2015
    Grüne Lösungen mit Diamant-Materialien
    Mit 3,9 Millionen Euro fördert das Europäische Forschungsprogramm Horizont 2020 ein internationales Projekt, das die Eignung von (Nano-)Diamant-Materialien als Katalysatoren untersucht: mit Hilfe von Sonnenlicht könnten solche Materialien Kohlendioxid in Brennstoffe umwandeln und damit Solarenergie chemisch speichern. [...]
  • <p>Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfl&auml;che andocken. Dabei liegt die Graphen-Monolage auf einer d&uuml;nnen Schicht aus Siliziumnitrid (rot) auf einer Quarzmikrowaage (blau) und kann mit einem Goldkontakt (gelb) unter Spannung gesetzt werden.</p>
<p>Illustration: Marc A. Gluba/HZB</p>
    Science Highlight
    24.06.2015
    Auf dem Weg zu Biosensoren mit Graphen
    Erstmals ist es einem Team gelungen, nicht nur präzise zu messen, sondern sogar zu steuern, wie stark eine Graphenschicht eine organische Verbindung absorbiert. Dies könnte in Zukunft ermöglichen, Graphen als empfindlichen Sensor für Biomoleküle zu nutzen. [...]
  • <p>Mit Synchrotron-Tomographie an BESSY II wurde die 3D-Struktur der Batterie-Elektrode mikrometergenau ermittelt.</p>
    Science Highlight
    02.06.2015
    Realitätsgetreues Modell einer Batterieelektrode am Rechner
    Ein Forschungsteam hat einen neuen Ansatz entwickelt, um Batterie-Elektroden am Computer noch realistischer zu modellieren. Sie kombinierten dafür Synchrotron-Tomographie-Aufnahmen, die die dreidimensionale Struktur mikrometergenau abbilden, mit Elektronenmikroskopie-Aufnahmen, die in einem kleinen Ausschnitt sogar Nanostrukturen auflösen. Mit einem mathematischen Modell konnten sie diese Nanostrukturen auf Bereiche außerhalb des Ausschnitts übertragen. Dadurch lassen sich Eigenschaften und Prozesse in Batterie-Elektroden nun höchst realistisch simulieren. [...]
  • <p>Auf der Tagung der Materials Research Society&nbsp; in San Francisco wurde Kai Neldner f&uuml;r seinen Posterbeitrag ausgezeichnet.</p>
    Nachricht
    29.05.2015
    Posterpreis für MatSEC-Doktoranden auf dem MRS-Frühjahrstreffen
    Auf der Tagung der Materials Research Society (MRS) in San Francisco ist der Posterbeitrag von Kai Neldner aus der HZB-Abteilung Kristallographie (EM-AKR) mit einem Preis des Symposiums B "Thin-Film Compound Semiconductor Photovoltaics" ausgezeichnet worden. Kai Neldner, der als Doktorand der HZB-Graduiertenschule "Materials for Solar Energy Conversion " (MatSEC) am HZB forscht, stellte dort Ergebnisse zu den strukturellen Eigenschaften von Kesteriten (Cu2ZnSnS4 - CZTS) im Verhältnis zu Abweichungen von deren Stöchiometrie vor. [...]
  • Nachricht
    27.05.2015
    Joint Lab BeJEL wirbt 1.4 Millionen Euro ein
    Das Berlin Joint EPR Lab (BeJEL) der Freien Universität Berlin und des HZB holt sechs von 27 Teilprojekten eines DFG-Schwerpunktprogramms nach Berlin, das die  Eigenschaften von Elektronenspins in Energiematerialien und biologischen Systemen untersucht. [...]
  • <p>Ah Reum Jeong hat ihre Promotion an der Ewha Womans University in Seoul, Korea, durchgef&uuml;hrt&nbsp; und arbeitet nun im &bdquo;Hybrid Material Systems &amp; Nano-Analytics&ldquo;-Team von Dr. Marin Rusu.</p>
    Nachricht
    27.05.2015
    Posterpreis für HZB-Postdoktorandin auf dem EMRS-Frühjahrstreffen
    Auf dem Frühjahrstreffen der European Materials Research Society ist der Posterbeitrag von Dr. Ah Reum Jeong aus dem HZB-Institut für Heterogene Materialsysteme ausgezeichnet worden. Die junge Wissenschaftlerin stellte dort Ergebnisse zu den elektronischen und strukturellen Eigenschaften im Verhältnis zur chemischen Zusammensetzung von Molybdänoxid-Schichten vor. Solche Schichten können in hybriden Solarzellen und optoelektronischen Bauelementen  eingesetzt werden. [...]
  • <p>Ein ferromagnetischer FeRh-Film ist auf ferroelastischem BTO mit den kristallinen Dom&auml;nen a und c aufgewachsen. Bei 0 Volt zeigen XPEEM-Daten &uuml;ber den a-Dom&auml;nen des BTO ferromagnetische Dom&auml;nen im FeRh (blau-rote Muster), &uuml;ber den c-Dom&auml;nen ist die Nettomagnetisierung im FeRh dagegen Null.  Eine Spannung von 50 Volt wandelt a-Dom&auml;nen zu c-Dom&auml;nen um und schaltet dadurch die ferromagnetischen Dom&auml;nen im FeRh aus. </p>
    Science Highlight
    18.05.2015
    Spintronik: Mit Spannung zwischen „0“ und „1“ umschalten
    In einer Struktur aus zwei verschiedenen ferroischen Schichten hat ein Team aus Paris und dem HZB es geschafft, mit Hilfe einer Spannung magnetische Domänen an und auszuschalten. Dies gelang jetzt schon nahe der Raumtemperatur. Ihre Arbeit ist für zukünftige Anwendungen in der Spintronik interessant, zum Beispiel um Daten mit weniger Energieaufwand schnell und effizient zu speichern. Die Ergebnisse sind nun in Scientific Reports veröffentlicht. [...]
  • <p>Dieser <a href="http://www.youtube.com/watch?v=ma-ZXS4XUp4" class="Extern">kurze Filmclip</a> zeigt die Herstellung der Photokathode mit dem ILGAR-Verfahren.</p>
    Science Highlight
    13.05.2015
    Künstliche Photosynthese: Neue Photokathode mit viel Potential
    Ein Team des HZB-Instituts für Solare Brennstoffe hat eine neue Komposit-Photokathode entwickelt, um mit Sonnenlicht effizient Wasserstoff zu erzeugen. Damit kann Solarenergie chemisch gespeichert werden. Die Photokathode besteht aus einer Chalkopyrit-Dünnschicht vom PVComB, die mit einem neu entwickelten dünnen Film aus Titandioxid beschichtet ist, in den Platin-Nanoteilchen eingebettet sind. Diese Schicht schützt die Chalkopyrit-Dünnschicht nicht nur vor Korrosion, sondern beschleunigt außerdem als Katalysator die Wasserstoffbildung und weist selbst hohe Photostromdichte und Photospannung auf. [...]
  • <p>Die Zeichnung skizziert das Tintendruck-Verfahren f&uuml;r eine Kesterit-Schicht. </p>
    Science Highlight
    06.05.2015
    Tintendruck-Verfahren für Kesterit-Solarzellen
    Ein Team aus dem HZB hat ein neues Verfahren entwickelt, um mit einer speziellen Tinte Kesterit-Absorberschichten (CTZSSe) Tropfen für Tropfen auszudrucken. Solarzellen mit so produzierten Absorberschichten erreichten Wirkungsgrade von 6,4 %. Auch wenn dies noch deutlich unter den Rekordwerten für Kesterit-Solarzellen liegt, ist das Tintendruck-Verfahren interessant für die industrielle Produktion, da es extrem ökonomisch ist und kaum Abfälle erzeugt. [...]
  • <p>Im EMIL-Teillabor &bdquo;SISSY&ldquo; (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron) k&ouml;nnen Materialsysteme f&uuml;r die Photovoltaik unter Ultrahochvakuum und mit einer Vielzahl an Methoden untersucht werden. </p>
    Nachricht
    29.04.2015
    HZB wirbt EU-Fördermittel für Solarzellenforschung ein
    Marcus Bär und sein Team sind an zwei internationalen Projekten beteiligt, die durch das EU-Forschungsrahmenprogramm „Horizon 2020“ gefördert werden. Beide Forschungsvorhaben befassen sich mit der Entwicklung und Optimierung von hocheffizienten Dünnschichtsolarzellen auf der Basis von Chalkopyriten („Sharc25“) bzw. Kesteriten („SWInG“).  Für das HZB bringen sie  zusammen rund 0,9 Mio. Euro zusätzliche Forschungsmittel für die Solarzellenforschung ein. [...]
  • <p>Aufnahmen mit dem Raster-Elektronenmikroskop zeigen, wie regelm&auml;&szlig;ig die in ein Silizium-Substrat einge&auml;tzten Trichter angeordnet sind (links: L&auml;ngenskala 5 Mikrometer, rechts: 1 Mikrometer). Die Trichter messen oben im Durchmesser noch rund 800 Nanometer und laufen unten auf etwa hundert Nanometer spitz zu. </p>
    Science Highlight
    24.02.2015
    Vom Auge abgeschaut: Mikrotrichter aus Silizium erhöhen die Effizienz von Solarzellen
    Eine Biostruktur im Säugetierauge hat ein Team um Silke Christiansen inspiriert, ein anorganisches Pendant für den Einsatz in Solarzellen zu entwerfen. Mit Hilfe etablierter halbleitertechnologischer Verfahren ätzten sie dicht an dicht mikrometerfeine, vertikale Trichter in ein Siliziumsubstrat. Mit Modellrechnungen und im Experiment testeten sie, wie solche Trichterfelder das einfallende Licht sammeln und in die aktive Schicht einer Siliziumsolarzelle leiten. Durch diese Trichteranordnung steigt die Lichtabsorption in einer damit versehenen Dünnschichtsiliziumsolarzelle um 65 %, was sich in deutlich verbesserten Solarzellparametern u.a. einem erhöhten Wirkungsgrad widerspiegelt. [...]
  • <p>Beim Chromdimer sind die beiden Chromatome &uuml;ber zw&ouml;lf gemeinsame Valenzelektronen eng miteinander verbunden. Da die Spins der Elektronen antiparallel zueinander sind, ist  kein magnetisches Moment zu beobachten. </p>
    Science Highlight
    23.02.2015
    Dehnen und Lockern! – Verlust eines Elektrons schaltet Magnetismus in Chromdimer an
    Ein internationales Forschungsteam aus Berlin, Freiburg und Fukuoka, Japan, hat erstmals einen direkten experimentellen Einblick in das geheime Quantenleben des Chromdimers gewonnen: Das Molekül aus zwei Chrom-Atomen besitzt zwölf Valenzelektronen, die eine enge Sechsfachbindung zwischen den beiden Atomen gewährleisten. Die Abspaltung von nur einem einzigen Elektron verändert diese Situation dramatisch: Zehn Elektronen lokalisieren sich und richten ihre Spins parallel aus, so dass das Chromdimer-Kation ferromagnetisch wird. Für die molekulare Bindung sorgt dann nur noch ein einziges Elektron. Die Forscher nutzten ein einzigartiges Instrument, die Nanocluster Trap an BESSY II am Helmholtz-Zentrum Berlin, und haben ihre Ergebnisse in der Zeitschrift Angewandte Chemie veröffentlicht. [...]
  • <p>Die Abbildung illustriert eine Momentaufnahme w&auml;hrend der Reaktion von CO zu CO<sub>2</sub>, wie sie nun erstmals am SLAC gelungen ist. </p>
    Science Highlight
    12.02.2015
    Erstmals mit Details: Wie giftiges Kohlenmonoxid am Katalysator zu Kohlendioxid verbrennt
    Ein internationales Forschungsteam hat erstmals die flüchtigen Zwischenstufen beobachtet, die sich bilden, wenn Kohlenmonoxid auf einer heißen Ruthenium-Oberfläche, einem einfachen Katalysator, oxidiert. Sie nutzten dafür ultrakurze Röntgenblitze und Laserpulse am SLAC National Accelerator Laboratory, Menlo Park, Kalifornien. Dabei erhitzte ein Laserblitz zunächst die Ruthenium-Oberfläche und aktivierte so die absorbierten Kohlenmonoxid-Moleküle und Sauerstoff-Atome. Über Röntgenabsorptionsspektroskopie konnte das Team dann ermitteln, wie sich die elektronische Struktur der Sauerstoffatome veränderte, während sie mit Kohlenstoff-Atomen Bindungen anbahnten. Die beobachteten Übergangszustände stimmen mit quantenchemischen Berechnungen gut überein. [...]
  • <p>Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Ger&uuml;st aufgeh&auml;ngt ist. Unterhalb des Magneten liegt die Detektorkammer (gr&uuml;n), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualit&auml;t wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert. <br /><br /></p>
    Nachricht
    15.01.2015
    VEKMAG-Messplatz an BESSY II
    Gemeinsam mit dem HZB haben Teams von der Universität Regensburg, der Freien Universität Berlin sowie der Ruhr-Universität Bochum bei BESSY II einen einzigartigen, neuen Messplatz aufgebaut: ein Vektormagnet aus drei senkrechten Helmholtz-Spulen ermöglicht es, lokal an der Probenposition beliebig orientierte Magnetfelder einzustellen. 2015 sollen erste Messungen an magnetischen Materialien, Spinsystemen und nanostrukturierten Proben durchgeführt werden. [...]