HZB Newsroom

  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

  • ERC Consolidator Grant for HZB researcher Robert Seidel
    News
    04.03.2024
    ERC Consolidator Grant for HZB researcher Robert Seidel
    Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
  • BESSY II: Local variations in the structure of High-Entropy Alloys
    Science Highlight
    30.01.2024
    BESSY II: Local variations in the structure of High-Entropy Alloys
    High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials. The study involved teams from HZB, the Federal Institute for Materials Research and Testing, the University of Latvia and the University of Münster.
  • Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    Science Highlight
    21.12.2023
    Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    The production of green hydrogen requires catalysts that control the process of splitting water into oxygen and hydrogen. However, the structure of the catalyst changes under electrical tension, which also influences the catalytic activity. A team from the universities of Duisburg-Essen and Twente has investigated at BESSY II and elsewhere how the transformation of surfaces in perovskite oxide catalysts controls the activity of the oxygen evolution reaction. 
  • Green hydrogen: Improving iridium catalysts with titanium oxides
    Science Highlight
    13.12.2023
    Green hydrogen: Improving iridium catalysts with titanium oxides
    Anodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a team at HZB and a group at HI-ERN have now produced a so-called material library: a sample in which the concentration of iridium and titanium oxides is systematically varied. Analyses of the individual sample segments at BESSY II in the EMIL laboratory showed that the presence of titanium oxides can increase the stability of the iridium catalyst significantly.
  • BESSY II: Neutralising electronic inhomogeneity in cleaved bulk MoS₂
    Science Highlight
    30.10.2023
    BESSY II: Neutralising electronic inhomogeneity in cleaved bulk MoS₂
    Molybdenum disulphide (MoS₂) is a highly versatile material that can function, for example, as a gas sensor or as a photocatalyst in green hydrogen production. Although the understanding of a material usually starts from investigating its bulk crystalline form, for MoS₂ much more studies have been devoted to mono and few layer nanosheets. The few studies conducted thus far show diverse and irreproducible results for the electronic properties of cleaved bulk MoS₂ surfaces, highlighting the need for a more systematic study.
  • Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production
    News
    08.10.2023
    Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production
    Tandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.
  • Diamond materials as solar-powered electrodes – spectroscopy shows what’s important
    Science Highlight
    08.10.2023
    Diamond materials as solar-powered electrodes – spectroscopy shows what’s important
    It sounds like magic: photoelectrodes could convert the greenhouse gas CO₂ back into methanol or N2 molecules into valuable fertiliser – using only the energy of sunlight. An HZB study has now shown that diamond materials are in principle suitable for such photoelectrodes. By combining X-ray spectroscopic techniques at BESSY II with other measurement methods, Tristan Petit’s team has succeeded for the first time in precisely tracking which processes are excited by light as well as the crucial role of the surface of the diamond materials.
  • Spintronics: X-ray microscopy unravels the nature of domain walls
    Science Highlight
    28.08.2023
    Spintronics: X-ray microscopy unravels the nature of domain walls
    Magnetic skyrmions are tiny vortices of magnetic spin textures. In principle, materials with skyrmions could be used as spintronic devices, for example as very fast and energy-efficient data storage devices. But at the moment it is still difficult to control and manipulate skyrmions at room temperature. A new study at BESSY II analyses the formation of skyrmions in ferrimagnetic thin films of dysprosium and cobalt in real time and with high spatial resolution. This is an important step towards characterising suitable materials with skyrmions more precisely in the future.
  • BESSY II: Surface analysis of catalyst particles in aqueous solutions
    Science Highlight
    21.07.2023
    BESSY II: Surface analysis of catalyst particles in aqueous solutions
    In a special issue on the liquid jet method, a team reports on reactions of water molecules on the surfaces of metal oxide particles. The results are relevant for the development of efficient photoelectrodes for the production of green hydrogen.
  • Quantitative analysis of cell organelles with artificial intelligence
    Science Highlight
    18.07.2023
    Quantitative analysis of cell organelles with artificial intelligence
    X-ray microscopy (cryo-SXT) enables high-resolution insights into cells and cell organelles - in three dimensions. Until now, the 3D data sets have been analysed manually, which is very time-consuming. A team from Freie Universität Berlin has now developed a self-learning algorithm based on a convolutional neural network. In collaboration with experts in cell biology (FU Berlin) and X-ray microscopy at the Helmholtz Zentrum Berlin, this algorithm has now been used for the first time to analyse cell components in cryo-SXT data sets. It identified cell organelles and produced highly detailed, complex 3D images within a few minutes.
  • BESSY II: What drives ions through polymer membranes
    Science Highlight
    05.07.2023
    BESSY II: What drives ions through polymer membranes
    Photoelectrolysers and electrolysis cells can produce green hydrogen or fossil-free carbon compounds – but they require ion-exchange membranes. An HZB team has now studied the transport of ions through the membrane in a hybrid liquid gas electrolyzer at the X-ray source BESSY II. Contrary to expectations, however, concentration differences hardly drive electric field ions. Diffusion is therefore the decisive process. This finding could help in the development of highly efficient and significantly more environmentally friendly membrane materials.
  • BESSY II: Experimental verification of an exotic quantum phase in Au2Pb
    Science Highlight
    15.06.2023
    BESSY II: Experimental verification of an exotic quantum phase in Au2Pb
    A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.
  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.