HZB Newsroom

Sear results - Keyword: accelerator physics

  • <p>Sharing knowledge is a pleasure for Roland M&uuml;ller. Here he explains to his granddaughter how BESSY II works.</p>
    News
    21.10.2021
    Life Time Achievement Award for Roland Müller
    Accelerator and control systems expert Roland Müller received the ICALEPCS Lifetime Achievement Award. In the more than thirty years of his career at BESSY, the physicist has advanced many projects on control systems at accelerators and has been particularly committed to the international exchange of knowledge.

  • <p>Information on beam quality can be extracted via the interference patterns at different focal lengths and photon intensities.</p> <p></p>
    Science Highlight
    30.09.2021
    Beam diagnostics for future laser wakefield accelerators
    For decades, particle accelerators have been getting bigger and bigger. In the meantime, ring accelerators with circumferences of many kilometres have reached a practical limit. Linear accelerators in the GHz range also require very long construction lengths. For some years now, however, an alternative is explored: "tabletop particle accelerators" based on the laser excitation of charge waves in plasmas (laser wakefield). Such compact particle accelerators would be particularly interesting for future accelerator-driven light sources, but are also being investigated for high-energy physics. A team from Helmholtz-Zentrum Berlin (HZB) and the Physikalisch-Technische Bundesanstalt (PTB) has developed a method to precisely measure the cross-section of electron bunches accelerated in this way.  This brings applications of these new accelerator technologies for medicine and research closer.

  • <p>DESY researcher Wiebke Ewert shows on a so-called electron density map where a drug candidate (green) binds to the main protease of the corona virus (blue).</p>
    News
    29.06.2021
    Synchrotrons accelerate corona research
    Information by the German Committee Research with Synchrotron Radiation (KFS).

    Synchrotron light sources were originally built to study particles. Today, they are even used in the fight against COVID-19. The projects are as diverse as the fields of the synchrotron users, who come from universities, research institutions and companies like BioNTech.

  • <p>Cover of the Helmholtz Photon Science Roadmap.</p>
    News
    28.06.2021
    Tailwind for top research in Germany

    Three research centres in the Helmholtz Association have developed a joint future plan for the research conducted at the scientific light sources they operate in Hamburg, Berlin and Dresden. The upgrades proposed in the strategy for their world-class accelerator-based facilities will strengthen Germany as a research location and promote innovations in many different fields. The strategy paper was presented on 28 June at the Helmholtz Symposium “Research Infrastructures of the Future” as a component of the Helmholtz Roadmap.

  • Science Highlight
    24.02.2021
    Accelerator physics: Experiment reveals new options for synchrotron light sources
    An international team has shown through a sensational experiment how diverse the possibilities for employing synchrotron light sources are. Accelerator experts from the Helmholtz-Zentrum Berlin (HZB), the German federal metrology institute Physikalisch-Technische Bundesanstalt (PTB), and Tsinghua University in Beijing have used a laser to manipulate electron bunches at PTB's Metrology Light Source so that they emitted intense light pulses having a laser-like character. Using this method, specialised synchrotron radiation sources would potentially be able to fill a gap in the arsenal of available light sources and offer a prototype for industrial applications. The work was published on 24 February 2021 in the leading scientific publication Nature.