Abdi, F.F.; Savenije, T.J.; May, M.M.; Dam, B.; van de Krol, R.: The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. Journal of Physical Chemistry Letters 4 (2013), p. 2752-2757
10.1021/jz4013257

Abstract:
We unravel for the first time the origin of the poor carrier transport properties of BiVO4, a promising metal oxide photoanode for solar water splitting. Time-resolved microwave conductivity (TRMC) measurements reveal an (extrapolated) carrier mobility of ∼4 × 10−2 cm2 V−1 s−1 for undoped BiVO4 under ∼1 sun illumination conditions, which is unusually low for a photoanode material. The poor carrier mobility is compensated by an unexpectedly long carrier lifetime of 40 ns. This translates to a relatively long diffusion length of 70 nm, consistent with the high quantum efficiencies reported for BiVO4 photoanodes. Tungsten (W) doping is found to strongly decrease the carrier mobility by introducing intermediate-depth donor defects as carrier traps. At the same time, the increased carrier density improves the overall photoresponse, which confirms that bulk electronic conductivity is one of the main performance bottlenecks for BiVO4.