• Schmitt, T.; Lange, S.; Dobner, B.; Sonnenberger, S.; Hauß, T.; Neubert, R.H.H.: Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir 34 (2018), p. 1742-1749

10.1021/acs.langmuir.7b01848

Abstract:
Neutron diffraction was used as a tool to investigate the lamellar as well as molecular nanostructure of ceramide-[NP]/ceramide-[AP]/cholesterol/ lignoceric acid model systems with a nativelike 2:1 ratio and a 1:2 ratio to study the influence of the ceramide-[AP]. By using mixtures together with cholesterol and free fatty acids as well as a humidity and temperature chamber while measuring, natural conditions were simulated as closely as possible. Despite its simplicity, the system simulated the native stratum corneum lipid matrix fairly closely, showing a similar lamellar thickness with a repeat distance of 5.45 ± 0.1 nm and a similar arrangement with overlapping long C24 chains. Furthermore, despite the very minor chemical difference between ceramide-[NP] and ceramide- [AP], which is only a single OH group, it was possible to demonstrate substantial differences between the structural influence of the two ceramides. Ceramide-[AP] could be concluded to be arranged in such a way that its C24 chain in both ratios is somehow shorter than that of ceramide-[NP], not overlapping as much with the opposite lamellar leaflet. Furthermore, in the unnatural 1:2 ratio, the higher ceramide-[AP] content causes an increased tilt of the ceramide acyl chains. This leads to even less overlapping within the lamellar midplane, whereas the repeat distance stays the same as for the ceramide-[NP]-rich system. In this nativelike 2:1 ratio, the chains are arranged mostly straight, and the long C24 chains show a broad overlapping region in the lamellar midplane.