New tool for Joint Lab to investigate the chemistry of nature

Intensity distribution of XUV light in the slit plane.

Intensity distribution of XUV light in the slit plane. © HZB/FU

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part).

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part). © HZB/FU

The Aziz’ team at the Joint Laboratory between Freie Universität Berlin and HZB has built a laser-based tabletop setup which generates ultrashort XUV light pulses and achieves their monochromatization by implementing special reflection zone plates, developed and produced by the team of Alexei Erko.

doi:10.1364/OE.22.010747

arö

  • Copy link

You might also be interested in

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.