New tool for Joint Lab to investigate the chemistry of nature

Intensity distribution of XUV light in the slit plane.

Intensity distribution of XUV light in the slit plane. © HZB/FU

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part).

Schematic picture for the high harmonic generation (HHG) light source (upper part) with zooming into the region of interaction with the liquid-phase sample (lower part). © HZB/FU

The Aziz’ team at the Joint Laboratory between Freie Universität Berlin and HZB has built a laser-based tabletop setup which generates ultrashort XUV light pulses and achieves their monochromatization by implementing special reflection zone plates, developed and produced by the team of Alexei Erko.

doi:10.1364/OE.22.010747

arö

  • Copy link

You might also be interested in

  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes.