MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran

Große Freude bei den Partnern von MAX IV und HZB nach Unterzeichnung der Kooperationsvereinbarung. V.l.n.r. Olof Karis, Direktor bei MAX IV, Antje Hasselberg, Prokuristin am HZB und Bernd Rech, wissenschaftlicher Geschäftsführer des HZB.

Große Freude bei den Partnern von MAX IV und HZB nach Unterzeichnung der Kooperationsvereinbarung. V.l.n.r. Olof Karis, Direktor bei MAX IV, Antje Hasselberg, Prokuristin am HZB und Bernd Rech, wissenschaftlicher Geschäftsführer des HZB. © HZB /Ronja Grünke

Die Unterzeichnung der Kooperationsvereinbarung fand während eines Treffens zwischen Forschenden von MAX IV und BESSY II in Berlin statt.

Die Unterzeichnung der Kooperationsvereinbarung fand während eines Treffens zwischen Forschenden von MAX IV und BESSY II in Berlin statt. © HZB

Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.

Die neue Vereinbarung verbessert die Zugänglichkeit und die allgemeinen Möglichkeiten für die Nutzer und Nutzerinnen, fortgeschrittene materialwissenschaftliche Untersuchungen an MAX IV und BESSY II auf reibungslose, integrierte Weise durchzuführen. Die Zusammenarbeit der Einrichtungen im Rahmen projektbezogener Initiativen umfasst u.a. den gegenseitigen Austausch von Wissen, die Entwicklung und Nutzung von Instrumenten, die Datenverarbeitung, wissenschaftliches und technisches Personal, Forschungsinitiativen und Promovierenden-Programme. 

"Die jahrzehntelange Zusammenarbeit zwischen Schweden und dem HZB, die zum Beispiel in der gemeinsamen Arbeit an energierelevanten Materialien und den dazugehörigen Methoden und Technologien wurzelt, hat unser Gebiet kontinuierlich vorangebracht. Die Vereinbarung, die wir heute unterzeichnen, gibt MAX IV und dem HZB eine solide Plattform, um die Synchrotron-Wissenschaft bis in die 2030er Jahre und darüber hinaus weiter voranzutreiben", sagte Olof Karis, Direktor von MAX IV.

Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, betonte: "Die Entwicklung neuer Materialien ist der Schlüssel für eine klimaneutrale Zukunft, die wir durch Wissenschaft und Innovation anstreben. Ich freue mich über die enge Beziehung, die wir über viele Jahre zwischen MAX IV und dem HZB aufgebaut haben. Mit der Kooperationsvereinbarung stellen wir sicher, dass auch in Zukunft kluge Köpfe zusammenarbeiten, um zum Beispiel neuartige Materialien und Beschleunigertechnologien zu erforschen."

Über die Einrichtungen

Das MAX IV-Labor ist eine nationale Großforschungseinrichtung in Lund, Schweden, die Wissenschaftlern die brillantesten Röntgenstrahlen für die Forschung in den Material- und Biowissenschaften zur Verfügung stellt. Das Synchrotron wird von der Universität Lund betrieben und hauptsächlich von schwedischen und internationalen Forschungsförderern, Konsortien und schwedischen Forschungsuniversitäten finanziert.
> MAX IV (auf Englisch)

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren in Deutschland und konzentriert sich auf die Energie-Materialforschung und die Weiterentwicklung von Beschleunigeranlagen.
Das HZB betreibt die Lichtquelle BESSY II sowie moderne Labore und Instrumente zur Untersuchung von Strukturen und Prozessen in Materialien.
> Helmholtz-Zentrum Berlin

MAX IV, BESSY II Comms

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.