HZB Newsroom

  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

  • ERC Consolidator Grant for HZB researcher Robert Seidel
    News
    04.03.2024
    ERC Consolidator Grant for HZB researcher Robert Seidel
    Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.
  • Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    Science Highlight
    21.12.2023
    Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    The production of green hydrogen requires catalysts that control the process of splitting water into oxygen and hydrogen. However, the structure of the catalyst changes under electrical tension, which also influences the catalytic activity. A team from the universities of Duisburg-Essen and Twente has investigated at BESSY II and elsewhere how the transformation of surfaces in perovskite oxide catalysts controls the activity of the oxygen evolution reaction. 
  • Green hydrogen: Improving iridium catalysts with titanium oxides
    Science Highlight
    13.12.2023
    Green hydrogen: Improving iridium catalysts with titanium oxides
    Anodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a team at HZB and a group at HI-ERN have now produced a so-called material library: a sample in which the concentration of iridium and titanium oxides is systematically varied. Analyses of the individual sample segments at BESSY II in the EMIL laboratory showed that the presence of titanium oxides can increase the stability of the iridium catalyst significantly.
  • Curious Mind Award for Michelle Browne
    News
    23.10.2023
    Curious Mind Award for Michelle Browne
    On Thursday, 12 October 2023, Michelle Browne received a prestigious award in Hamburg: The "Curious Mind Award" in the category "Mobility, Energy and Sustainable Business" by manager magazin. 
  • Green hydrogen could reach economic viability by co-production of valuable chemicals
    Science Highlight
    09.10.2023
    Green hydrogen could reach economic viability by co-production of valuable chemicals
    It already works: there are several approaches to using solar energy to split water and produce hydrogen. Unfortunately, this green hydrogen has so far been more expensive than grey hydrogen from natural gas. A study by Helmholtz-Zentrum Berlin (HZB) and Technische Universität Berlin now shows how green hydrogen from sunlight can become profitable.
  • Solar hydrogen: Barriers for charge transport in metal oxides
    Science Highlight
    12.07.2023
    Solar hydrogen: Barriers for charge transport in metal oxides
    In theory, metal oxides are ideally suited as photoelectrodes for the direct generation of hydrogen with sunlight. Now, for the first time, a team at Helmholtz-Zentrum Berlin has succeeded in determining the transport properties of the charge carriers in different metal oxides over a time range of nine orders of magnitude.
  • BESSY II: What drives ions through polymer membranes
    Science Highlight
    05.07.2023
    BESSY II: What drives ions through polymer membranes
    Photoelectrolysers and electrolysis cells can produce green hydrogen or fossil-free carbon compounds – but they require ion-exchange membranes. An HZB team has now studied the transport of ions through the membrane in a hybrid liquid gas electrolyzer at the X-ray source BESSY II. Contrary to expectations, however, concentration differences hardly drive electric field ions. Diffusion is therefore the decisive process. This finding could help in the development of highly efficient and significantly more environmentally friendly membrane materials.