HZB Newsroom

Sear results - Keyword: cooperations

  • <p>Illustration of the QFI calculation&nbsp;&#8203;</p>
    Science Highlight
    Neutron data help to reveal “spooky” entanglement in quantum magnets
    Using data from the British neutron source ISIS from the year 2000, research teams have now demonstrated the viability of a “quantum entanglement witness” capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material. A team from HZB led by Prof. Bella Lake was also involved in the analysis.
  • Nachricht
    BIPV – Chance für die Photovoltaik im urbanen Kontext: Jetzt anmelden
    Das Webinar „Bauwerkintegrierte Photovoltaik (BIPV) – Chance für die Photovoltaik im urbanen Kontext“ widmet sich der Photovoltaik im Gebäudesektor, der für die Klimaneutralität eine wichtige Rolle spielt.
  • <p>Finely ground powders can also react with each other without solvents to form the desired product. This is the approach of mechanochemistry.</p>
    Science Highlight
    "Green" chemistry: BESSY II sheds light on mechanochemical synthesis
    In mechanochemistry, reagents are finely ground and mixed so that they combine to form the desired product, even without need for solvent. By eliminating solvent, this technology promises to contribute significantly towards ‘green’ and environmentally benign chemical manufacture in the future. However, there are still major gaps in understanding the key processes that occur during mechanical treatment and reaction. A team led by the Federal Institute for Materials Research (BAM) has now developed a method at BESSY II to observe these processes in situ with X-ray scattering. 

  • News
    20 Years Russian-German Joint Laboratory at BESSY II
    To mark its 20th anniversary, the Russian-German Laboratory at the BESSY II storage ring for synchrotron radiation in Berlin is organising an online workshop on 18 and 19 November. Scientists will discuss the future perspectives of Russian-German cooperation as well as innovative projects and new goals of the laboratory.

  • <p>HZB is the first non-university research institution to be awarded the " Vielfalt gestalten " ("Shaping Diversity") certificate by the Stifterverband.<br /><br />(from left to right: Volker Meyer-Guckel, Deputy Secretary General of the Stifterverband, Jennifer Schevardo, HZB Project Manager Diversity Audit, Jan L&uuml;ning, scientific director at HZB).</p>
    Stifterverband certifies Helmholtz Centre Berlin for strategies in dealing with diversity

    The Helmholtz-Zentrum Berlin (HZB) is the first non-university research institution to have undergone the Stifterverband's diversity audit "Vielfalt gestalten". The certification attests to the HZB's opportunity-oriented concepts and measures for diverse groups of people.

  • <p>STM topography of a monolayer CrCl<sub>3</sub> grown on Graphene/6H-SiC(0001). Inset, a magnified topography image, which reveals the grain boundaries.</p>
    Science Highlight
    Spintronics: Exotic ferromagnetic order in two-dimensions
    An international team has detected at HZB's vector magnet facility VEKMAG an unusual ferromagnetic property in a two-dimensional system, known as “easy-plane anisotropy”. This could foster new energy efficient information technologies based on spintronics for data storage, among other things. The team has published its results in the renowned journal Science.

  • <p>Maximilian Fleischer, speaker of the Industry Council and Tobias Henschel, Winner of the HZB Technology Transfer Preises 2021.</p>
    Solar energy for a sport watch: HZB Technology Transfer Prize 2021 awarded
    At first glance, it looks like an ordinary wristwatch. But its glass taps the energy of the sun. A research group at Helmholtz-Zentrum Berlin has made this possible. Their transparent photovoltaics have now even made it into mass production, securing the team this year's HZB Technology Transfer Award.

  • <p>Information on beam quality can be extracted via the interference patterns at different focal lengths and photon intensities.</p> <p></p>
    Science Highlight
    Beam diagnostics for future laser wakefield accelerators
    For decades, particle accelerators have been getting bigger and bigger. In the meantime, ring accelerators with circumferences of many kilometres have reached a practical limit. Linear accelerators in the GHz range also require very long construction lengths. For some years now, however, an alternative is explored: "tabletop particle accelerators" based on the laser excitation of charge waves in plasmas (laser wakefield). Such compact particle accelerators would be particularly interesting for future accelerator-driven light sources, but are also being investigated for high-energy physics. A team from Helmholtz-Zentrum Berlin (HZB) and the Physikalisch-Technische Bundesanstalt (PTB) has developed a method to precisely measure the cross-section of electron bunches accelerated in this way.  This brings applications of these new accelerator technologies for medicine and research closer.

  • <p>Such metal foams based on aluminium alloys are being investigated as lightweight materials, for example for the construction of electric cars. The morphology, size and cross-linking of the bubbles are important to achieve the desired mechanical properties such as strength and stiffness in large components.</p>
    Science Highlight
    New world record in materials research - X-ray microscopy with 1000 tomograms per second
    Tomoscopy is an imaging method in which three-dimensional images of the inside of materials are calculated in rapid succession. Now a team led by HZB physicist Francisco García Moreno has achieved a new world record at the TOMCAT beamline of the Swiss Light Source at the Paul Scherrer Institute: with 1000 tomograms per second, it is now possible to non-destructively document very fast processes and developments in materials on the micrometre scale, such as the burning of a sparkler or the foaming of a metal alloy for the production of stable lightweight materials. 

  • News
    Technology Transfer Award ceremony on 5.10.: Visit the poster exhibitions

    On 5 October, the best innovation project from HZB will be awarded the Technology Transfer Prize 2021. The award ceremony will be broadcast online from the BESSY II lecture hall from 2 pm. You can already find out about all the submitted projects in our exhibition, which can be found from 21.09 in Wannsee in front of the colloquium room and in Adlershof in front of the BESSY cafeteria.

  • News
    BR50: How Berlin could be developed into a world-leading science metropolis
    On 26 September, not only the Bundestag but also the Berlin House of Representatives will be newly elected. In a position paper, the non-university institutions in the capital that are united in Berlin Research 50 now emphasise what is important for research after the election. In it, they outline 10 demands that the future Senate should implement in order to further strengthen Berlin as a science metropolis.

  • <p></p> <p>Resonant X-ray excitation (purple) core excites the oxygen atom within a H<sub>2</sub>O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).</p> <p></p> <p></p>
    Review: X-ray scattering methods with synchrotron radiation
    Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

  • <p>The MX team at BESSY II specialises in analysing protein structures. This can also accelerate the development of drugs against COVID-19.</p>
    HZB coordinates European collaboration to develop active agents against Corona
    X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. Now, a team at HZB with partners from Austria and the Czech Republic has set up the NECESSITY project to investigate more than 8000 compounds in a high-throughput procedure and develop active agents against COVID-19.

  • <p>After about 5 seconds, a thin film of metallic water has formed around the NaK drop, recognisable by the golden shimmer.</p>
    Science Highlight
    Water as a metal - detected at BESSY II
    Under normal conditions, pure water is an almost perfect insulator. Water only develops metallic properties under extreme pressure, such as exists deep inside of large planets. Now, an international collaboration has used a completely different approach to produce metallic water and documented the phase transition at BESSY II. The study is published now in Nature.

  • <p>Pouch cell Lab</p>
    Battery research - SkaLiS project funded with 2.2 million euros
    Powerful, compact, and affordable batteries are needed for the energy transition. Groups at the Helmholtz-Zentrum Berlin (HZB) led by Prof. Yan Lu, Dr. Ingo Manke, and Dr. Sebastian Risse are conducting this research. They are investigating and developing novel types of electrode materials based on sulphur and silicon. Risse is now also coordinating a large project involving teams from HZB as well as from the University of Potsdam near Berlin, the Technische Universität Berlin, the Technische Universität Dresden and the Fraunhofer Institute for Material and Beam Technology IWS Dresden.
  • News
    Faster development of efficient solar cells and LEDs thanks to HZB spin-off
    Scientists from the Helmholtz Innovation Lab HySPRINT at HZB spun off the technology company QYB Quantum Yield Berlin GmbH at the beginning of April 2021. The spin-off is launching LuQY Pro, a ready-to-use measurement instrument that can help develop and optimise optoelectronic components such as solar cells and LEDs in a more efficient and resource-saving manner.

  • <p>Inauguration of the new research building of the Helmholtz Institute Erlangen-Nuremberg for Renewable Energies (HI ERN) in Erlangen on Wednesday 14.07.2021</p>
    Hi ERN - New headquarters of the Helmholtz Institute in Erlangen inaugurated
    The Helmholtz Institute Erlangen-Nuremberg, Hi ERN, in which the HZB is involved, has moved into its new building. 

    Almost exactly four years lie between the groundbreaking ceremony and the festive inauguration: the new research building of the Helmholtz Institute Erlangen-Nuremberg for Renewable Energies (Hi ERN) is another address for cutting-edge research. 

  • News
    DAPHNE - Data for Photon and Neutron Experiments
    Data in the petabyte range are produced annually at large-scale facilities. This research data must be stored for at least ten years. Now 19 scientific institutions in Germany, among them HZB, aim to develop common standards for software, data exchange and data repositories to make research data permanently available. The DAPHNE4NFDI project will be funded over the next five years as part of the National Research Data Infrastructure and is coordinated by DESY.

  • <p>DESY researcher Wiebke Ewert shows on a so-called electron density map where a drug candidate (green) binds to the main protease of the corona virus (blue).</p>
    Synchrotrons accelerate corona research
    Information by the German Committee Research with Synchrotron Radiation (KFS).

    Synchrotron light sources were originally built to study particles. Today, they are even used in the fight against COVID-19. The projects are as diverse as the fields of the synchrotron users, who come from universities, research institutions and companies like BioNTech.

  • <p>Cover of the Helmholtz Photon Science Roadmap.</p>
    Tailwind for top research in Germany

    Three research centres in the Helmholtz Association have developed a joint future plan for the research conducted at the scientific light sources they operate in Hamburg, Berlin and Dresden. The upgrades proposed in the strategy for their world-class accelerator-based facilities will strengthen Germany as a research location and promote innovations in many different fields. The strategy paper was presented on 28 June at the Helmholtz Symposium “Research Infrastructures of the Future” as a component of the Helmholtz Roadmap.

  • <p></p> <p>VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).</p> <p></p>
    VIPERLAB: EU project aims to boost perovskite solar industry in Europe
    The HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros. 

  • <p>Around the catalytic centre is a group of molecules, the gating domain, which can occupy two different positions.</p>
    Science Highlight
    BESSY II: universal mechanism of regulation in plant cells discovered
    In pioneering work, a German-Japanese research team at BESSY II has been able to determine the 3D structure of a metalloprotein that plays an important role as a catalyst in all plant cells. This involves the DYW deaminase domain of what is referred to as the RNA editosome. The DYW domain alters messenger RNA nucleotides in chloroplasts and mitochondria and contains a zinc ion whose activity is controlled by a very unusual mechanism. The team has now been able to describe this mechanism in detail for the first time. Their study, published in Nature Catalysis, is considered a breakthrough in the field of plant molecular biology and has far-reaching implications for bioengineering.

  • <p>The launch event for the opening of the CatLab took place on 21 June.</p> <p>f.l.t.r.: Prof. Dr. Bernd Rech (HZB), Dr. Stefan Kaufmann (BMBF), Prof. Dr. Robert Schl&ouml;gl (MPG)</p>
    CatLab - Starting signal for a new generation of catalysts
    The Helmholtz-Zentrum Berlin (HZB) and the Max Planck Society (MPG) are launching CatLab, their new joint catalysis research centre in Berlin. The inauguration ceremony took place on June 21st in the presence of Dr. Stefan Kaufmann, the Innovation Officer for Green Hydrogen at the Federal Ministry of Education and Research (BMBF) and Member of the federal Bundestag. High-ranking representatives from science, government, and industry took part.
  • <p>View into a MOF crystal exemplified by DUT-8. The massive pores are clearly discernible.</p>
    Science Highlight
    BESSY II: New insights into switchable MOF structures at the MX beamlines
    Metal-organic framework compounds (MOFs) are widely used in gas storage, material separation, sensor technology or catalysis. A team led by Prof. Dr. Stefan Kaskel, TU Dresden, has now investigated a special class of these MOFs at the MX beamlines of BESSY II. These are "switchable" MOFs that can react to external stimuli. Their analysis shows how the behaviour of the material is related to transitions between ordered and disordered phases. The results have now been published in Nature Chemistry.

  • <p>Prof. Dr. Udo Heinemann works at the Max Delbr&uuml;ck Center for Molecular Medicine and initiated the setting up of the MX beamlines almost 20 years ago. His group contributed more than 250 structures to the Protein Data Bank.</p>
    “The gain in insights for structural biology has continued for five decades”

    Prof. Dr. Udo Heinemann works at the Max Delbrück Center for Molecular Medicine, where he has been researching in structural biology for 40 years. From 2008 to 2012, he was a member of the Advisory Board for the Protein Data Bank in Europe. In an interview, he speaks of the value added by the Protein Data Bank for research today, and why it is important that there are specialised beamlines for structural biology analysis in Berlin.

  • <p class="MsoListParagraph">The first image taken by MYSTIIC: a standard image used to calibrate and measure the resolution of the new STXM.</p>
    MYSTIIC at BESSY II: New X-ray microscope put into operation
    A new X-ray microscope has started operation at the Energy Materials in situ Lab (EMIL). It is a scanning transmission X-ray microscope designed to examine both sample surfaces and bulk sample. With the soft X-ray light from BESSY II, it is even possible to localise individual elements and chemical compounds; the spatial resolution is below 20 nanometres.

  • <p>The HZB team was able to determine the photoconductivity in the thin layers of rust using time-resolved microwave measurements; here is a picture of the measurement setup.</p>
    Science Highlight
    Green hydrogen: "Rust" as a photoanode and its limits
    Metal oxides such as rust are intriguing photoelectrode materials for the production of green hydrogen with sunlight. They are cheap and abundant, but in spite of decades of research, progress has been limited. A team at HZB, together with partners from Ben Gurion University and the Technion, Israel, has now analysed the optoelectronic properties of rust (haematite) and other metal oxides in unprecedented detail. Their results show that the maximum achievable efficiency of haematite electrodes is significantly lower than previously assumed. The study demonstrates ways to assess new photoelectrode materials more realistically.

  • News
    Virtual tours: Experience the HZB in 360 degrees!

    Unfortunately, due to Corona, we are currently unable to receive groups of visitors at HZB and guide them through our centre. Despite Corona, we would like to provide you with insights into HZB. Simply follow our 360-degree tours and experience how we conduct research at the BESSY II accelerator. Further tours are being planned.

  • <p>Electron density map of the most antiviral active ingredient calpeptin (yellow) binding at the main protease.</p>
    Science Highlight
    X-ray lightsource at DESY identifies promising candidates for COVID drugs
    At DESY's high-brilliance X-ray light source PETRA III, a team from more than 30 research institutions has identified several candidates for active substances against the coronavirus SARS-CoV-2. They bind to an important protein of the virus and could thus be the basis for a drug against Covid-19. The MX team from HZB examined part of the measurement data with special analysis algorithms in order to identify suitable active substances. The study has now been published in the renowned journal Science.

  • <p>An impression of the placoderm fish living 380 million years ago.</p>
    Science Highlight
    Tomography brings insights into the early evolution of bones
    Modern biology considers bone cells (osteocytes) as essential for bone development and health. However, when bone initially evolved some 400-million years ago, it did not contain bone cells. So why did bone cells evolve? Why was it so advantageous that most subsequent vertebrates have bone cells? A joint team of palaeontologists at Berlin’s natural history museum has now for the first time analysed these structures in 400 million-year-old fossils of marine life at unprecedentedly high resolution and in 3D. To be able to view these structures, tomography experts at the Helmholtz-Zentrum Berlin (HZB) examined the samples under the focussed ion beam of a scanning electron microscope to calculate 3D images from the data, achieving resolutions in the nanometre range using technology that was initially developed to study battery corrosion.


  • <p>Radio TEDDY presenter Leo hosts the "Experimentierkasten" on air and explains everything very simply so that everyone can join in.</p>
    The Radio TEDDY experimental show with the HZB - tune in on Saturdays at 2.40 pm!

    The Helmholtz-Zentrum Berlin and Radio TEDDY continue their successful cooperation. In the next round, we will provide ideas for six exciting experiments that the Radio TEDDY moderator Leo will conduct for the children in front of the radio. Participating, having fun and arousing curiosity - that's the top priority. Tune in now: every Saturday at 2.40 p.m. and of course you can also listen to the programme online.

  • <p></p> <p>Electron microscopy shows the graphene sample (gray) in which the helium beam has created a hole pattern so that the density varies periodically. This results in the superposition of vibrational modes and the emergence of a mechanical band gap. The frequency of this phononic system can be adjusted between 50 MHz and 217 MHz by mechanical tension.&nbsp;</p> <p></p>
    Science Highlight
    New skills of Graphene: Tunable lattice vibrations
    Technological innovation in the last century was mainly based on the control of electrons or photons. Now, in the emerging research field of phononics, phonons or vibrations of the crystal lattice attract attention. A team at Freie Universität Berlin and Helmholtz-Zentrum Berlin showed a graphene-based phononic crystal whose resonant frequency can be tuned over a broad range and has used a helium-ion microscope to produce such a crystal. This is a real breakthrough in the field of phononics, now published in Nano Letters.

  • <p>Artificial and natural interzones on a tooth restored with non-degradable biomaterials are exposed to mechanical (left: stresses acting in compression, tension and shear) and biological challenges (right: bacterial attachment, penetration, and other interactions with biological media).</p>
    Dental materials science: HZB is part of a research project funded by DFG
    How can dental restorations – such as fillings and crowns – be made to last longer? A new research group centered at Charité – Universitätsmedizin Berlin and Technische Universität (TU) Berlin plans to address this topic by utilizing approaches from both materials science and dentistry. The interdisciplinary ‘InterDent’ research group is funded by the German Research Foundation (DFG). It will receive an initial funding of €2.1 million Euro over three years. Partners also include the Helmholtz-Zentrum Berlin (HZB) and the Max Planck Institute of Colloids and Interfaces (MPI-KG).

  • Science Highlight
    Accelerator physics: Experiment reveals new options for synchrotron light sources
    An international team has shown through a sensational experiment how diverse the possibilities for employing synchrotron light sources are. Accelerator experts from the Helmholtz-Zentrum Berlin (HZB), the German federal metrology institute Physikalisch-Technische Bundesanstalt (PTB), and Tsinghua University in Beijing have used a laser to manipulate electron bunches at PTB's Metrology Light Source so that they emitted intense light pulses having a laser-like character. Using this method, specialised synchrotron radiation sources would potentially be able to fill a gap in the arsenal of available light sources and offer a prototype for industrial applications. The work was published on 24 February 2021 in the leading scientific publication Nature.

  • <p>Overview: Number of patients treated with prontons at HZB from 1998 to 2020.&nbsp;&nbsp;</p>
    The 4000th eye tumour patient treated with protons at HZB

    On 19 February 2021, the 4000th eye tumour patient received irradiation with protons, performed by a joint team from Helmholtz-Zentrum Berlin (HZB) and Charité - Universitätsmedizin Berlin. The number of patients treated in 2020 remained at the previous year's level despite the more difficult corona conditions. The treatment in Berlin-Wannsee is only available for uveal melanomas of the eye. The proton accelerator at HZB is the only therapy site for this disease in Germany.

  • <p>The phonons distribution is complex (upper curves) and then simplifies with time to a Gaussian bell curve (lower curve).</p>
    Science Highlight
    How complex oscillations in a quantum system simplify with time
    With a clever experiment, physicists have shown that in a one-dimensional quantum system, the initially complex distribution of vibrations or phonons can change over time into a simple Gaussian bell curve. The experiment took place at the Vienna University of Technology, while the theoretical considerations were carried out by a joint research group from the Freie Universität Berlin and HZB.

  • <p>Part of the IRIS research labs will be equipped for research on catalysts. Photo</p>
    HZB and Humboldt University agree to set up a catalysis laboratory
    Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.

  • Nachricht
    21.01.: Seminar zu klimaneutralem Planen, Bauen und Betreiben
    Bauwerkintegrierte Photovoltaik (BIPV) bietet in Städten und Gemeinden enorme Möglichkeiten, aktiv zum Klimaschutz beizutragen. Im Seminar geht es um die baurechtlichen Anforderungen, den Brandschutz und den Einsatz verschiedener PV-Materialien.

  • <p>The illustration visualizes the composition of the tandem solar cell.</p>
    Science Highlight
    Perovskite/silicon tandem solar cells on the threshold of 30% efficiency
    An HZB team has published a report in the journal Science on the development of its current world record of 29.15% efficiency for a tandem solar cell made of perovskite and silicon. The tandem cell provided stable performance for 300 hours – even without encapsulation. To accomplish this, the group headed by Prof. Steve Albrecht investigated physical processes at the interfaces to improve the transport of the charge carriers.