Photovoltaik-Forschung des HZB als Weltspitze bewertet

Im Ranking eines internationalen Wissenschafts-Verlages über Forschungsleistungen auf dem Gebiet der alternativen Energien schneidet das HZB als beste europäische Forschungseinrichtung ab und belegt weltweit den 3. Platz.

Im Ranking eines internationalen Wissenschafts-Verlages über Forschungsleistungen auf dem Gebiet der alternativen Energien schneidet das HZB als beste europäische Forschungseinrichtung ab und belegt weltweit den 3. Platz.
Der Verlag Elsevier analysierte nach eigenen Angaben 3.000 Forschungseinrichtungen nach einer neuen Evaluierungsmethode. Grundlage ist dabei die Zahl der wissenschaftlichen Veröffentlichungen in sogenannten Kernkompetenzen. Diese repräsentieren die Expertise einer Einrichtung in spezifischen Forschungsgebieten. Somit wird in den Ergebnissen mit bewertet, in welchem Maße eine Institution interdisziplinäre Netzwerke innerhalb ihrer Organisation beziehungsweise des Forschungsgebietes aufgebaut hat. Prof. Dr. Dr. hc Wolfgang Eberhardt, verantwortlicher Geschäftsführer des HZB für das Gebiet der Energieforschung, sagt zu dem Ranking:
„Wir freuen uns sehr, dass wir in dieser unabhängigen Bewertung einen Spitzenrang weltweit einnehmen. Dies zeigt, dass unsere Strategie, die ganze Breite der Forschung von den Grundlagen bis zur Anwendung abzudecken, zum Erfolg führt und dass wir insbesondere auch mit dem Umfeld in Adlershof und dem vom HZB und der TU-Berlin gemeinsam betriebenen Kompetenzzentrum PVcomB ein international anerkanntes Zentrum der Photovoltaik-Forschung sind.“ Die Leistung des HZB führt zusammen mit der Bewertung des Forschungszentrums Jülich (Platz vier) dazu, dass Deutschland auf dem Gebiet der Photovoltaik-Forschung in der Länderwertung hinter den USA und Japan auf Platz drei liegt. Weitere Informationen zum Ranking und zur Evaluierungsmethode sind auf der Website von Elsevier zu finden.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.

     

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.