Katalysator im Kunststoffmantel schützt „Künstliches Blatt“

Diese komplexe Solarzelle ist mit zwei unterschiedlichen Katalysatoren beschichtet und funktioniert wie ein „künstliches Blatt“: sie nutzt Sonnenlicht, um Wasser aufzuspalten und Wasserstoffgas zu erzeugen.

Diese komplexe Solarzelle ist mit zwei unterschiedlichen Katalysatoren beschichtet und funktioniert wie ein „künstliches Blatt“: sie nutzt Sonnenlicht, um Wasser aufzuspalten und Wasserstoffgas zu erzeugen.

Speicherlösungen für die unregelmäßig verfügbare Solarenergie werden dringend gesucht. Eine Lösung ist es, die in Solarzellen erzeugte elektrische Energie zu nutzen, um durch Elektrolyse Wasser aufzuspalten und so den Brennstoff Wasserstoff zu erzeugen. Forscher am HZB-Institut für Solare Brennstoffe modifizieren so genannte Superstrat-Solarzellen, die eine sehr effiziente Architektur besitzen, um mit geeigneten Katalysatoren Wasserstoff aus Wasser zu produzieren. Diese Zelle funktioniert wie ein „künstliches Blatt“. Doch im wässrigen Elektrolyten korrodiert die Solarzelle rasch. Nun hat eine Doktorandin des Teams, Diana Stellmach, als erste Wissenschaftlerin in Europa eine neue Lösung gefunden, um die Korrosion zu verhindern: Sie bettet die Katalysatoren in einen leitfähigen Kunststoff ein und bringt sie dann auf die beiden Kontakte der Solarzelle auf. Damit versiegelt sie die empfindlichen Kontakte der Zelle gegen Korrosion und ermöglicht eine stabile Ausbeute von etwa 3,7 Prozent des Sonnenlichts.

Wasserstoff speichert Energie auf chemische Weise und ist vielseitig einsetzbar. Das Gas kann zu Brennstoffen wie Methan weiterverarbeitet werden oder direkt in Brennstoffzellen Strom erzeugen. Wasserstoff lässt sich durch die elektrolytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff herstellen; dafür sind zwei Elektroden nötig, die mit geeigneten Katalysatoren beschichtet sind und zwischen denen eine Spannung (mindestens 1,23 V) anliegt. Interessant wird die Erzeugung von Wasserstoff aber erst, wenn dafür Solarenergie genutzt werden kann. Denn das würde zwei Probleme auf einmal lösen: An sonnigen Tagen könnte überschüssiger Strom Wasserstoff erzeugen, der dann nachts oder an trüben Tagen als Brennstoff oder zur Stromerzeugung zur Verfügung stünde.  

Neue Ansätze mit komplexen Dünnschicht-Silizium-Solarzellen

Am Institut für Solare Brennstoffe des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) arbeiten Forscher an neuen Ansätzen, um dieses Ziel zu verfolgen: Dafür nutzen sie photovoltaische Strukturen aus mehreren, extrem dünnen Silizium-Schichten, die am Photovoltaik-Kompetenzzentrum-Berlin (PVcomB), einem anderen Institut des HZB, maßgeschneidert gefertigt werden. Weil die Zelle aus einem einzigen – wenn auch komplex aufgebauten – „Block“ besteht, spricht man von einem monolithischen Ansatz. Die elektrischen Kontaktflächen der Zelle werden im Institut für Solare Brennstoffe mit speziellen Katalysatoren für die Wasserspaltung beschichtet. Wird diese Zelle in verdünnte Schwefelsäure eingetaucht und mit sonnenähnlichem Licht bestrahlt, entsteht an den Kontakten eine Spannung, die für die Aufspaltung von Wasser genutzt werden kann. Elementar wichtig sind in diesem Prozess die Katalysatoren, die die Reaktionen an den Kontakten beschleunigen.

Neue Lösung verhindert Korrosion

Der Vorteil der photovoltaischen Zellen des PVcomB ist deren „Superstrat- Architektur“: Das Licht fällt durch den transparenten Frontkontakt ein, der auf dem Trägerglas abgeschieden ist; es gibt keine Verschattung durch aufgebrachte Katalysatoren. Die Katalysatoren befinden sich nämlich auf der Rückseite der Solarzelle und sind im Kontakt mit dem Wasser/Säuregemisch. Dieses ist sehr angriffslustig, das heißt korrosiv, so dass Diana Stellmach im ersten Schritt den üblichen Zinnoxid-Silber-Rückkontakt durch eine Beschichtung mit Titan von etwa 400 Nanometern Dicke ersetzen musste. Im zweiten Schritt entwickelte sie eine Lösung, um mit dem Aufbringen des Katalysators gleichzeitig die Zelle gegen Korrosion zu schützen: Sie mischte RuO2-Nanoteilchen in ein leitfähiges Polymer (PEDOT:PSS) und trug diese Mischung als Katalysator für die Sauerstoffbildung auf dem Rückseitenkontakt der Zelle auf. Auf den Frontkontakt wurden in analoger Weise Platin Nanoteilchen aufgebracht, an denen die Wasserstoffentwicklung abläuft.

Erstmals stabile Produktionsraten

Insgesamt erzielte die Konfiguration einen Wirkungsgrad von 3,7 % und war über mindestens 18 Stunden stabil. „Damit ist Frau Stellmach die erste Wissenschaftlerin in Europa, die eine solche wasserspaltende Solarzellenstruktur realisiert hat“, erklärt Prof. Dr. Sebastian Fiechter. Vielleicht sogar weltweit, denn anders aufgebaute Photovoltaikmembranen erwiesen sich als weniger stabil. Allerdings müssen die teuren Katalysatoren wie Platin und RuO2 langfristig noch durch preiswertere Stoffe ersetzt werden. Auch daran arbeitet Diana Stellmach bereits; sie entwickelt nun Kohlenstoff-Nanoröhren, die mit Molybdän-Sulfid-Schichten ummantelt sind und als Katalysatoren für die Wasserstoffentwicklung dienen.

Hier können Sie die Zelle in Aktion sehen: http://www.helmholtz-berlin.de/mediathek/video/energieversorgung/superstratzelle_de.html

 

arö

Das könnte Sie auch interessieren

  • Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Nachricht
    06.02.2023
    Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Der 2. Netzwerktag der Allianz BIPV findet statt am 14.02.2023 von 10 bis 16 Uhr statt. Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • Webinar | Ausgezeichnete Solararchitektur: Ausgewählte Projekte aus dem Architekturpreis gebäudeintegrierte Solartechnik 2022
    Nachricht
    17.01.2023
    Webinar | Ausgezeichnete Solararchitektur: Ausgewählte Projekte aus dem Architekturpreis gebäudeintegrierte Solartechnik 2022
    Die Solarenergienutzung an Gebäuden ist ein zentrales Thema auf dem Weg zur Klimaneutralität. Solartechnische Systeme sollten selbstverständliche Bestandteile innovativer Gebäudehüllen wie auch Bausteine energetischer Sanierung sein.