HZB-Forscher stoßen Tor für die Festkörperphysik auf

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische R&ouml;ntgenstreuung verst&auml;rken kann, bei der eine Frequenzverschiebung stattfindet.<br />&copy;HZB/E. Strickert

An einem Siliziumkristall haben die Forscher gezeigt, wie man inelastische Röntgenstreuung verstärken kann, bei der eine Frequenzverschiebung stattfindet.
©HZB/E. Strickert

Laserprozesse jetzt auch mit Röntgenstrahlen am Festkörper beobachtet

Die physikalische Grundlagenforschung wäre ohne die Vielzahl der heute verwendeten Röntgenmethoden nicht mehr denkbar. In der Festkörperphysik werden sie genutzt, bei biologischen Strukturuntersuchungen ebenfalls, und sogar Kunsthistoriker verdanken den Röntgenstrahlen viele Erkenntnisse. Nun haben Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) eine weitere Anwendungsoption erschlossen. Ein Team um Dr. Martin Beye und Prof. Alexander Föhlisch hat gezeigt, dass Feststoffe auch für Röntgenmessungen zugänglich sind, die auf nichtlinearen physikalischen Effekten beruhen. Bislang war dies nur bei Messungen mit Laserlicht möglich. Sie veröffentlichen ihre Arbeit in der online vorab erscheinenden Ausgabe der Zeitschrift Nature (DOI: 10.1038/nature12449). Ihre Ergebnisse können Einfluss darauf haben, wie neue Röntgenquellen zukünftig konstruiert sein müssen.  

So genannte nichtlineare Effekte sind die Grundlage der kompletten Laserphysik. Für Röntgenuntersuchungen schienen sie bislang nicht nutzbar zu sein. Die Physik, die den Röntgenmethoden bisher zugrunde liegt, basiert ausschließlich auf linearen Effekten. Das heißt, wenn die Strahlung auf ein Untersuchungsobjekt trifft, arbeitet jedes Lichtteilchen - das Photon - für sich alleine.

Anders bei Lasern. Die Energie- und Leistungsdichte von eingestrahltem Laserlicht kann so hoch werden, dass die Photonen zusammenarbeiten und beim Wechselwirken mit Materie nichtlineare Effekte auftreten. Dies hat zur Folge, dass Materialien bestimmte Farben des Lichts extrem verstärken. Mit anderen Worten: man bestrahlt einen Kristall mit grünem Licht, das ausgesendete Licht ist rot. Die ausgesendete Farbe kann dabei sehr genau mit Struktureigenschaften des untersuchten Stoffes korreliert werden.

Dass man solche Effekte nun auch mit weicher Röntgenstrahlung erzielen kann und Feststoffe diesem Messprinzip zugänglich sind, hat die Gruppe um Alexan¬der Föhlisch vom HZB nun mit Experimenten an der Hamburger Kurzpulsquelle FLASH am DESY nachgewiesen. „Der Wirkungsgrad von inelastischen Streuprozessen mit weicher Röntgenstrahlung ist normalerweise schlecht“, erläutert Martin Beye, der Erstautor der vorliegenden Arbeit: „Mit unserem Experiment zeigen wir, wie man inelastische Röntgenstreuung geschickt verstärken kann. Ähnlich wie beim Laser arbeiten alle Photonen zusammen und verstärken sich gegenseitig. Wir erhalten so ein sehr hohes Messsignal.“

Mit solchen Aufbauten an Röntgenquellen können zukünftig inelastische Röntgenstreuprozesse effizient genutzt werden, etwa um sehr schnelle Prozesse zu analysieren und zu verstehen. Zum Beispiel das Aufbrechen und Entstehen chemischer Bindungen, Anregungen in Quantenmaterialien (zum Beispiel Supraleitern) sowie ultraschnelle Schaltprozesse.

„Heutige Röntgenquellen sind für die Anwendung von stimulierter inelastischer Streuung gar nicht optimiert“, sagt Alexander Föhlisch. „Mit dem jetzt vorliegenden Ergebnis wissen wir, dass wir auch mit weicher Röntgenstrahlung nichtlineare Effekte nutzen können. Wir brauchen dafür Photonenquellen, die schnell hintereinander kurze Lichtpulse liefern können. Dies gilt es bei der Entwicklung zukünftiger Photonenquellen zu berücksichtigen.“

Das könnte Sie auch interessieren

  • Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Nachricht
    12.08.2022
    Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 
  • Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Science Highlight
    11.08.2022
    Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Elektrische Energie aus Wind oder Sonne lässt sich als chemische Energie in Wasserstoff speichern, einem hervorragenden Kraftstoff und Energieträger. Voraussetzung dafür ist allerdings die effiziente Elektrolyse von Wasser mit kostengünstigen Katalysatoren. Nanostrukturiertes Nickelsilizid kann die Effizienz der Sauerstoffentwicklungsreaktion an der Anode deutlich steigern. Dies zeigte nun ein Team aus dem HZB, der Technischen Universität Berlin und der Freien Universität Berlin im Rahmen der Forschungsplattform CatLab unter anderem auch mit Messungen an BESSY II.
  • RBB Abendschau zu Besuch bei CatLab
    Nachricht
    01.08.2022
    RBB Abendschau zu Besuch bei CatLab
    CatLab bekam Besuch von der rbb Abendschau.
    Unter dem Titel "Der Weg weg vom Erdgas" wurde der Beitrag am Sonntag, 31. Juli in de rbb Abendschau ausgestrahlt und wird für 7 Tage in die rbb-Mediathek verfügbar.