Themen: Energie (311) Solarenergie (245) Solare Brennstoffe (76)

Nachricht    09.12.2013

Hochleistungssolarzellen kostengünstiger herstellen

Dr. Sebastian Brückner untersuchte Silizium- und Germaniumsubstrate für Hochleistungssolarzellen. Foto: HZB / Silvia Zerbe

Dr. Sebastian Brückner promovierte mit „summa cum laude“ über Solarzellen aus III-V-Halbleitern

Solarzellen, die aus III-V Halbleitern bestehen, erreichen höchste Wirkungsgrade. Forscher feierten erst kürzlich einen neuen Weltrekord unter Beteiligung des HZB: Es gelang ihnen, eine Solarzelle mit einem Wirkungsgrad von 44,7 Prozent zu entwickeln. Hinter dieser Technologie steckt weiteres Potenzial, wenn die Teilprozesse bei der Herstellung der Hochleistungszellen noch besser kontrolliert werden können. Eine wichtige Herausforderung hat Sebastian Brückner aus dem Helmholtz-Zentrum Berlin im Rahmen seiner Promotion bewältigt. Er untersuchte die atomare Oberflächenstruktur von Silizium und Germanium, die als Substrat-Materialien für diese Solarzellen infrage kommen. Brückner legte überzeugend dar, wie Silizium- und Germaniumsubstrate optimal in Prozessgasumgebung präpariert werden müssen, um Defekte in den nachfolgenden III-V-Schichten zu vermeiden. Für seine Dissertation, die er an der Humboldt-Universität zu Berlin bei Prof. Dr. Recardo Manzke am Institut für Physik einreichte, erhielt er jetzt die akademische Bestnote – ein summa cum laude.

Solarzellen mit III-V-Halbleitern kommen wegen der hohen Wirkungsgrade vor allem bei der Energieversorgung von Satelliten im Weltall oder in Konzentrator-Photovoltaik-Systemen (Bündelung des Lichteinfalls z.B. durch Linsen) zum Einsatz. In der Industrie hat sich Germanium als Substrat für diese Zellen etabliert. Germanium ist im Vergleich zu Silizium teuer und aufwändig in der Herstellung, ebenso gibt es eine viel breitere Erfahrungsbasis im Umgang mit dem vielverwendeten Wafer-Material. Die Arbeit von Sebastian Brückner zeigt nun, dass ein Wechsel auf Silizium grundsätzlich möglich wäre.

Sebastian Brückner hat die Substrate, bestehend aus Silizium und Germanium, mit der metallorganischen chemischen Gasphasenabscheidung (MOCVD) präpariert und sich das Verhalten an deren Oberflächen und den Grenzflächen zu den III-V Halbleitermaterialien genau angeschaut. Dafür nutzte er verschiedene Ultrahochvakuum-basierte Methoden und eine spezielle in-situ-Spektroskopie (in-situ Reflexions-Anisotropie-Spektroskopie), um die atomaren Oberflächenstrukturen beider Materialien zu vergleichen und kontrolliert zu präparieren.  Entscheidend ist hier die Präparation von atomaren Doppelstufen auf der Substrat Oberfläche. Dem Nachwuchsforscher gelang es auch, wichtige Prozessparameter (unter anderem Temperatur und Druck) zu identifizieren, um Silizium- und Germanium-Substrate mit der exakt gewünschten atomaren Struktur herzustellen. Dieses Verfahren für Siliziumsubstrate wurde mittlerweile am HZB patentiert.

Auch für die Erzeugung solarer Brennstoffe können diese Ergebnisse Bedeutung haben, schlussfolgert Sebastian Brückner: „In Strukturen zur solaren Wasserspaltung werden Tandemkonfigurationen benötigt, in welchen  Absorber aus einer Silizium/III-V-Halbleiterkombination besonders geeignet wären. Verwendet man Silizium als Substrat, könnten solche Tandemzellen zudem kostengünstig hergestellt werden.“

Sebastian Brückner ist seit Juni 2011 in der Arbeitsgruppe von Prof. Thomas Hannappel an der TU Ilmenau beschäftigt und an das HZB im Rahmen einer Kooperation abgeordnet. Thomas Hannappel wechselte im Sommer 2011 nach Ilmenau und hat dort ein mittlerweile 16-köpfiges Team aufgebaut.

Der Titel der Dissertation von Sebastian Brückner lautet: “Atomic scale in situ control of Si(100) and Ge(100) surfaces in CVD ambient”. Die Zusammenfassung können Sie rechts downloaden.

(sz)


           



Das könnte Sie auch interessieren
  • <p>Bassi untersucht Materialsysteme, die als Photoelektrokatalysatoren die Wasserspaltung mit Licht erm&ouml;glichen.</p>NACHRICHT      20.05.2019

    Posterpreis für HZB Postdoc Prince Saurabh Bassi

    Auf dem "International Bunsen-Discussion-Meeting on Fundamentals and Applications of (Photo) Electrolysis for Efficient Energy Storage” erhielt Dr. Prince Saurabh Bassi den Posterpreis. Bassi ist Postdoc bei Prof. Sebastian Fiechter am HZB-Institut für Solare Brennstoffe.

    [...]


  • <p>Im Innovationslabor HySPRINT arbeiten HZB-Teams an neuen Verfahren zur Herstellung von Perowskit-Solarzellen.</p>NACHRICHT      16.05.2019

    Europäische Perowskit-Initiative EPKI gestartet

    Perowskit-basierte Solarzellen haben in den letzten zehn Jahren enorme Fortschritte gemacht und erreichen im Labormaßstab bereits Wirkungsgrade von 24,2% (Anfang 2019) in Single-Junction-Architekturen und bis zu 28% im Tandem mit kristallinem Silizium. Dies macht sie zu der Solartechnologie, die sich bis heute am schnellsten entwickelt. Das Helmholtz-Zentrum Berlin hat in den letzten Jahren mit dem HySPRINT Projekt und der Rekrutierung talentierter Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler eine erhebliche Forschungskapazität im Bereich Perowskit-Materialien aufgebaut und beteiligt sich an der nun gestarteten Europäischen Perowskit-Initiative EPKI. [...]


  • NACHRICHT      15.05.2019

    Das HZB auf der INTERSOLAR in München

    Das Helmholtz-Zentrum Berlin (HZB) präsentiert sich vom 15. bis 17. Mai auf der INTERSOLAR in München, der weltweit größten Solarmesse. Das HZB zählt international zu den führenden Forschungszentren im Bereich der Solarenergie und zeigt neueste Entwicklungen in der Photovoltaik und bei den solaren Brennstoffen. Das HZB bietet vielseitige Kooperationsmöglichkeiten für Unternehmen – von der Auftragsforschung bis zum gemeinsamen Forschungsprojekt. [...]




Newsletter