Themen: Energie (316) Solarenergie (252) Solare Brennstoffe (79)

Nachricht    12.05.2015

Erfolgsquote 100 Prozent: Drittmittel für Projekte zu Solaren Brennstoffen

Am HZB-Institut für Solare Brennstoffe werden auch nanostrukturierte Metalloxide auf ihre Eignung als effiziente und preiswerte Katalysatoren für die künstliche Photosynthese untersucht.
Copyright: HZB

Die flüchtige Energie der Sonne umzuwandeln und zu speichern, zählt zu den großen Herausforderungen der Energiewende. Über eine „künstliche Photosynthese“ kann Solarenergie zur Erzeugung von Wasserstoff genutzt werden. Forscherteams am HZB-Institut für Solare Brennstoffe arbeiten an neuen anorganischen Materialsystemen, um kompakte, robuste und preiswerte Lösungen für diese künstliche Photosynthese zu entwickeln. Gemeinsam mit Partnern aus Universitäten haben sie vier Forschungsvorhaben bei der Deutschen Forschungsgemeinschaft DFG im Schwerpunktprogramm „Regenerativ produzierte Brennstoffe durch lichtinduzierte Wasserspaltung“ (SPP 1613) eingereicht. Alle vier Projekte werden nun durch die DFG gefördert.

„Insgesamt konnte nur die Hälfte der eingereichten Forschungsvorhaben bewilligt werden, in diesem harten Wettbewerb ist eine Erfolgsquote von 100 Prozent wirklich bemerkenswert”, sagt Professor Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. „Das bedeutet für uns, dass wir die Aktivitäten unseres Instituts weiter verstärken und ausbauen können.“ Für die ersten drei Projekte hat die DFG die Weiterführung für die nächsten drei Jahre bewilligt, das vierte Projekt ist ein neues Forschungsvorhaben. 

Am HZB-Institut für Solare Brennstoffe arbeiten die Forschungsgruppen daran, monolithische Materialsysteme zu entwickeln,  bei denen halbleitende Absorber und Katalysatoren in einer Struktur integriert sind. Dabei untersuchen und optimieren sie die photonischen Anregungen, die Sonnenlicht in den Halbleiterstrukturen auslöst, genauso wie die Prozesse an den Katalysatorschichten, an denen sich Wasserstoffgas bildet.

Die Vision ist es, die Energie des Sonnenlichts in Form von chemischer Energie zu speichern, durch die Aufspaltung von Wasser in Sauerstoff und Wasserstoff. Wasserstoff besitzt eine hohe gravimetrische Energiedichte, lässt sich gut speichern und kann bei Bedarf direkt in Brennstoffzellen Strom erzeugen oder auch als Ausgangsmaterial für die Herstellung künstlicher Kohlenwasserstoff-Brennstoffe genutzt werden.


Die Forschungsvorhaben im Einzelnen:

  • Development of catalysts, namely manganese oxides and molybdenum sulphides, for an implementation in a light-driven water-splitting device using a multi-junction solar cell. Partner: Prof. H. Dau (PI, FU-Berlin), Prof. P. Kurz (University Freiburg i. Br.), Prof. S. Fiechter (HZB).
  • High-throughput characterization of multinary transition metal oxide and oxynitride libraries. New materials for solar water splitting with improved properties. Partner: Prof. Wolfgang Schuhmann (PI, Ruhr University Bochum), Prof. Alfred Ludwig (Ruhr University Bochum), Prof. S. Fiechter (HZB).
  • Novel thin film composites and co-catalysts for visible light-induced water splitting. Partner: M. Behrens (Uni Duisburg), A. Fischer (Uni Freiburg), M. Lerch (TU Berlin), T. Schedel-Niedrig (HZB).
  • Development of optimum bandgap photoanodes for tandem water-splitting cells based on doped complex metal oxides and III-V semiconductors coupled to water oxidation electrocatalysts. Partner: R. Beranek (PI, Ruhr University Bochum), A. Devi (Ruhr University Bochum), R. Eichberger (HZB).

arö


           



Das könnte Sie auch interessieren
  • <p>Ein R&ouml;ntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.</p>SCIENCE HIGHLIGHT      09.07.2019

    Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

    In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild. [...]


  • <p>Die Physikalische Gesellschaft zu Berlin zeichnet Steve Albrecht mit dem Karl-Scheel-Preis aus.</p>NACHRICHT      24.06.2019

    Steve Albrecht gewinnt den Karl-Scheel-Preis 2019

    Mit dem diesjährigen Karl-Scheel-Preis würdigt die Physikalische Gesellschaft zu Berlin Steve Albrecht vom Helmholtz-Zentrum Berlin für Materialien und Energie für seine Arbeiten auf dem Gebiet von hocheffizienten Tandem-Solarzellen mit Absorbern aus Metall-Halogenid-Perowskiten. [...]




Newsletter