Von angeregten Atomen zur Funktionalität – ERC Advanced Grant für Alexander Föhlisch

Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Professor an der Universität Potsdam.

Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Professor an der Universität Potsdam. © HZB

Im EU-Forschungs- und Innovationsprogramm „Horizon 2020“ hat Alexander Föhlisch einen ERC Advanced Grant eingeworben. Der renommierte Physiker ist Professor am Institut für Physik und Astronomie der Universität Potsdam und leitet am Helmholtz-Zentrum Berlin das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung. Mit dem ERC Advanced Grant erhält er für seine Arbeit an hochselektiven Nachweisverfahren mit Synchrotronlicht und Röntgenlasern insgesamt 2,5 Millionen Euro für fünf Jahre.

Der European Research Council (ERC) fördert mit den Advanced Grants unkonventionelle und wegbereitende Forschung und unterstützt herausragende Spitzenforscher. Derzeit führen Wissenschaftler der Universität Potsdam sechs weitere ERC Grants durch.

Das neue Forschungsprojekt trägt den Namen „Excited state Dynamics from Anti-Stokes and non-linear resonant inelastic X-ray scattering“ (EDAX). Alexander Föhlisch wird darin untersuchen, wie sich chemische Reaktionspfade und Phasenübergangsverhalten mit neuartigen röntgenspektroskopischen Verfahren sichtbar machen lassen. Sie dienen als Grundlage für eine effiziente Energiewandlung und zukünftige energieeffiziente Informationstechnologien.

Alexander Föhlisch studierte Physik an der Eberhard Karls Universität Tübingen und erhielt sein Diplom an der Universität Hamburg und den Master of Arts in Physics an der State University of New York at Stony Brook. Vor seiner Habilitation in Experimentalphysik an der Universität Hamburg promovierte er an der Universität Uppsala in Schweden, wo er an der Advanced Light Source des Lawrence Berkeley National Laboratory forschte. Als gemeinsam berufener Professor der Universität Potsdam und des Helmholtz-Zentrums Berlin bestimmt er die elektronische Struktur und ultraschnelle Dynamik atomarer Einheiten mit innovativen Röntgenmethoden. Grundlegende Eigenschaften von Materialien – wie Moleküldynamiken an Grenzflächen, Schaltprozesse an Festkörpern oder chemische Bindungsverhältnisse aktiver Zentren – können so bestimmt werden.

Uni Potsdam/HZB

Das könnte Sie auch interessieren

  • Atomare Verschiebungen in Hochentropie-Legierungen untersucht
    Science Highlight
    27.06.2022
    Atomare Verschiebungen in Hochentropie-Legierungen untersucht
    Hochentropie-Legierungen aus 3d-Metallen haben faszinierende Eigenschaften, die Anwendungen im Energiesektor in Aussicht stellen. Ein internationales Team hat nun lokale Verschiebungen auf atomarer Ebene in einer hochentropischen Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel untersucht. Mit spektroskopischen Analysen an BESSY II und statistischen Simulationen konnten sie das Verständnis dieser Materialgruppe deutlich erweitern.
  • Stellvertretender Premierminister von Singapur besucht das HZB
    Nachricht
    21.06.2022
    Stellvertretender Premierminister von Singapur besucht das HZB
    Am Freitag, den 17. Juni, war eine Delegation aus Singapur zu Gast am HZB. Heng Swee Keat, stellvertretender Premierminister von Singapur, wurde vom Botschafter von Singapur in Berlin, Laurence Bay, sowie von Vertreter*innen aus Forschung und Wirtschaft begleitet.

  • Mit Künstlicher Intelligenz die „Fingerabdrücke“ von Molekülen errechnen
    Science Highlight
    13.06.2022
    Mit Künstlicher Intelligenz die „Fingerabdrücke“ von Molekülen errechnen
    Mit konventionellen Methoden ist es extrem aufwändig, den spektralen Fingerabdruck von größeren Molekülen zu berechnen. Dies ist aber eine Voraussetzung, um experimentell gewonnene Messdaten korrekt zu interpretieren. Nun hat ein Team am HZB mit selbstlernenden Graphischen Neuronalen Netzen sehr gute Ergebnisse in deutlich kürzerer Zeit erzielt.