Neues Labor für Elektrochemische Grenzflächen an BESSY II

Das Helmholtz-Zentrum Berlin (HZB) baut mit der Max-Planck-Gesellschaft (MPG) ein gemeinsames Labor für elektrochemische Untersuchungen an Fest-Flüssig-Grenzflächen auf. Das „Berlin Joint Lab for Electrochemical Interfaces“, kurz BElChem, nutzt Röntgenlicht von BESSY II, um Materialien für die regenerative Energiegewinnung zu analysieren.

Das HZB betreibt mit BESSY II eine Synchrotronlichtquelle, die brillante Röntgenpulse erzeugt. Damit lassen sich elektronische und chemische Prozesse in Dünnschichtmaterialien untersuchen.  Nun bauen das HZB und die Max-Planck-Gesellschaft (MPG) gemeinsam ein weiteres neues Labor an BESSY II auf, um Materialsysteme für elektrochemische und katalytische Anwendungen zu analysieren. Für das BElChem-Labor betreiben die Partner drei eigene Strahlrohre, zwei davon erzeugen weiches Röntgenlicht, eines stellt härtere Röntgenstrahlung zur Verfügung.

Analyse von komplexen Materialsystemen

„Mit BElChem schaffen wir ideale Bedingungen, um elektrochemische Prozesse in komplexen Materialsystemen unter realen Bedingungen aufzuklären. Zum Beispiel wollen wir analysieren, wie „Künstliche Blatt“-Systeme funktionieren, die mit Sonnenlicht Wassermoleküle spalten und solaren Wasserstoff erzeugen“, sagt Prof. Dr. Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. 

Optimierung von Hochleistungskatalysatoren

Die Partner am Fritz-Haber-Institut (FHI) der MPG fokussieren sich auf katalytisch aktive Materialien. „Unser Team studiert die grundlegenden Prozesse, die bei der Spaltung von Wasser durch elektrischen Strom eine Rolle spielen und bei der Umsetzung des entstehenden Wasserstoffs mit Kohlendioxid beteiligt sind. Damit erarbeiten wir Prinzipien, nach denen Hochleistungskatalysatoren optimiert werden können“, sagt  Prof. Dr. Robert Schlögl, der das FHI leitet.

Photoelektronenspektroskopie und spezielle Probenumgebungen

Das Labor wird mit modernsten Instrumenten für die Photoelektronenspektroskopie ausgestattet, spezielle Probenumgebungen ermöglichen Untersuchungen unter unterschiedlichen Umgebungsbedingungen (Druck, Temperatur, Schutzgasen). Sechs Postdoktorandenstellen sind für den Aufbau und den Betrieb des neuen gemeinsamen Labors eingeplant. Auch Forschungsgruppen aus anderen Wissenschaftseinrichtungen, Universitäten oder der Industrie können BElChem nutzen.

Partnerschaft mit der MPG erweitert

Mit BElChem erweitern HZB und MPG ihre erfolgreiche Partnerschaft. Die Partner betreiben an BESSY II bereits mehrere Beamlines und haben gemeinsam das Energy Materials In-situ Laboratory (EMIL@BESSY II) aufgebaut, das im Oktober 2016 in Betrieb genommen wurde. EMIL dient ebenfalls der Entwicklung von Energiematerialien, zum Beispiel neuartigen Solarzellen oder Materialsystemen zur Erzeugung von solaren Brennstoffen. Die dort aufgebauten Synthese- und Analytikmöglichkeiten werden nun mit dem Aufbau des Joint Lab BElChem  gezielt ergänzt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.