Neues Labor für Elektrochemische Grenzflächen an BESSY II

Das Helmholtz-Zentrum Berlin (HZB) baut mit der Max-Planck-Gesellschaft (MPG) ein gemeinsames Labor für elektrochemische Untersuchungen an Fest-Flüssig-Grenzflächen auf. Das „Berlin Joint Lab for Electrochemical Interfaces“, kurz BElChem, nutzt Röntgenlicht von BESSY II, um Materialien für die regenerative Energiegewinnung zu analysieren.

Das HZB betreibt mit BESSY II eine Synchrotronlichtquelle, die brillante Röntgenpulse erzeugt. Damit lassen sich elektronische und chemische Prozesse in Dünnschichtmaterialien untersuchen.  Nun bauen das HZB und die Max-Planck-Gesellschaft (MPG) gemeinsam ein weiteres neues Labor an BESSY II auf, um Materialsysteme für elektrochemische und katalytische Anwendungen zu analysieren. Für das BElChem-Labor betreiben die Partner drei eigene Strahlrohre, zwei davon erzeugen weiches Röntgenlicht, eines stellt härtere Röntgenstrahlung zur Verfügung.

Analyse von komplexen Materialsystemen

„Mit BElChem schaffen wir ideale Bedingungen, um elektrochemische Prozesse in komplexen Materialsystemen unter realen Bedingungen aufzuklären. Zum Beispiel wollen wir analysieren, wie „Künstliche Blatt“-Systeme funktionieren, die mit Sonnenlicht Wassermoleküle spalten und solaren Wasserstoff erzeugen“, sagt Prof. Dr. Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. 

Optimierung von Hochleistungskatalysatoren

Die Partner am Fritz-Haber-Institut (FHI) der MPG fokussieren sich auf katalytisch aktive Materialien. „Unser Team studiert die grundlegenden Prozesse, die bei der Spaltung von Wasser durch elektrischen Strom eine Rolle spielen und bei der Umsetzung des entstehenden Wasserstoffs mit Kohlendioxid beteiligt sind. Damit erarbeiten wir Prinzipien, nach denen Hochleistungskatalysatoren optimiert werden können“, sagt  Prof. Dr. Robert Schlögl, der das FHI leitet.

Photoelektronenspektroskopie und spezielle Probenumgebungen

Das Labor wird mit modernsten Instrumenten für die Photoelektronenspektroskopie ausgestattet, spezielle Probenumgebungen ermöglichen Untersuchungen unter unterschiedlichen Umgebungsbedingungen (Druck, Temperatur, Schutzgasen). Sechs Postdoktorandenstellen sind für den Aufbau und den Betrieb des neuen gemeinsamen Labors eingeplant. Auch Forschungsgruppen aus anderen Wissenschaftseinrichtungen, Universitäten oder der Industrie können BElChem nutzen.

Partnerschaft mit der MPG erweitert

Mit BElChem erweitern HZB und MPG ihre erfolgreiche Partnerschaft. Die Partner betreiben an BESSY II bereits mehrere Beamlines und haben gemeinsam das Energy Materials In-situ Laboratory (EMIL@BESSY II) aufgebaut, das im Oktober 2016 in Betrieb genommen wurde. EMIL dient ebenfalls der Entwicklung von Energiematerialien, zum Beispiel neuartigen Solarzellen oder Materialsystemen zur Erzeugung von solaren Brennstoffen. Die dort aufgebauten Synthese- und Analytikmöglichkeiten werden nun mit dem Aufbau des Joint Lab BElChem  gezielt ergänzt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.