Themen: Energie (316) Solarenergie (252) Technologietransfer (49)

Science Highlight    17.09.2018

Patentierte Nanostruktur für Solarzellen: Raue Optik, glatte Oberfläche

Die Nanostruktur zum Lichteinfang wird auf Siliziumoxid (blau) eingeprägt und dann mit Titanoxid (grün) „eingeebnet“. So entsteht eine optisch raue, aber dennoch glatte Schicht, auf der kristallines Silizium aufwachsen kann.
Copyright: HZB

Kristalline Dünnschichtsolarzellen aus Silizium sind preisgünstig und schaffen Wirkungsgrade von gut 14 Prozent. Sie könnten allerdings noch mehr leisten, wenn ihre glänzenden Oberflächen weniger Licht reflektieren würden. Eine raffinierte, neue Lösung für dieses Problem hat ein Team um Prof. Dr. Christiane Becker vom Helmholtz-Zentrum Berlin (HZB) nun patentieren lassen.

„Es reicht nicht aus, einfach mehr Licht in die Zelle zu bringen“, weiß Christiane Becker. Denn solche Oberflächenstrukturen können den Wirkungsgrad im Endeffekt sogar verringern, indem sie die  elektronischen Eigenschaften des Materials verschlechtern.

Optisch rau - ansonsten glatt

Die Idee, die David Eisenhauer im Rahmen seiner Promotion im Team von Becker ausgearbeitet hatte, klingt einfach, erfordert aber einen ganz neuen Ansatz: Es geht darum, eine Struktur herzustellen, die sich „optisch rau“ verhält und das Licht gut streuen kann, gleichzeitig aber eine „glatte“ Oberfläche besitzt, auf der die Siliziumschicht (die wichtigste Schicht der Solarzelle) nahezu defektfrei aufwachsen kann.

Stempeln, aushärten, aufschleudern, aufwachsen

Das Verfahren besteht aus mehreren Schritten: Zunächst stempeln die Forscher eine optimierte Nanostruktur auf eine noch flüssige Siliziumoxid-Vorläuferschicht, die im Anschluss ausgehärtet wird. Dabei handelt es sich um winzige, regelmäßig angeordnete, zylinderförmige Erhöhungen, die sich Licht "einfangen" und damit in die Solarzelle leiten. Allerdings wirken sich diese Strukturen ungünstig auf die elektronische Materialqualität der Solarzelle aus. Denn auf der rauen Oberfläche kann die absorbierende Schicht aus kristallinem Silizium nicht fehlerfrei aufwachsen. Um diesen Konflikt aufzulösen, wird in einem weiteren Schritt eine sehr dünne Schicht aus Titanoxid aufgeschleudert. Dadurch  werden die Vertiefungen zwischen den Zylindern ausgefüllt, so dass eine relativ glatte Oberfläche entsteht, auf der das eigentliche Absorbermaterial gut aufgebracht werden kann.

SMART ist nun patentiert

Die Beschichtung, die nun patentiert ist, besitzt den sprechenden Namen „SMART“  (smooth anti-reflective three-dimensional texture). Damit gelingt es, Reflektionen zu verringern und mehr Licht in die absorbierende Silizium-Schicht zu bringen, ohne deren elektronische Eigenschaften zu beeinträchtigen.

Christiane Becker leitet eine Nachwuchsgruppe am HZB, die vom BMBF im Programm NanoMatFutur gefördert wird. Im Rahmen des BerOSE Joint Lab arbeitet sie eng mit dem Zuse-Institut zusammen, um durch Computersimulationen zu ermitteln, wie sich Nanostrukturierungen auf Materialeigenschaften auswirken.

 

Zur Publikation in Scientific Reports (2017): Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass; David Eisenhauer, Grit Köppel, Klaus Jäger, Duote Chen, Oleksandra Shargaieva, Paul Sonntag, Daniel Amkreutz, Bernd Rech & Christiane Becker 

doi: 10.1038/s41598-017-02874-y

 

Lesetipp: Christiane Becker im Porträt, Lichtblick 36, Sept. 2018, “Mehr Licht in Solarzellen einfangen”

arö


           



Das könnte Sie auch interessieren
  • <p>Ein R&ouml;ntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.</p>SCIENCE HIGHLIGHT      09.07.2019

    Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

    In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild. [...]


  • <p>Die Physikalische Gesellschaft zu Berlin zeichnet Steve Albrecht mit dem Karl-Scheel-Preis aus.</p>NACHRICHT      24.06.2019

    Steve Albrecht gewinnt den Karl-Scheel-Preis 2019

    Mit dem diesjährigen Karl-Scheel-Preis würdigt die Physikalische Gesellschaft zu Berlin Steve Albrecht vom Helmholtz-Zentrum Berlin für Materialien und Energie für seine Arbeiten auf dem Gebiet von hocheffizienten Tandem-Solarzellen mit Absorbern aus Metall-Halogenid-Perowskiten. [...]




Newsletter