Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erhöhten P-Atome, weiß, die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erhöhten P-Atomen als Dreiecke.

Die STM-Aufnahme zeigt Blauen Phosphor auf einem Gold-Substrat. Blau eingezeichnet sind die errechneten Positionen der leicht erhöhten P-Atome, weiß, die der tiefer liegenden. Im STM-Bild zeigen sich Gruppen aus sechs erhöhten P-Atomen als Dreiecke. © HZB

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente. Die Ergebnisse sind nun in Nano Letters publiziert.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren roter, violetter, weißer und schwarzer Phosphor. Während einige Phosphorverbindungen sogar lebenswichtig sind, ist weißer Phosphor giftig und brandgefährlich und schwarzer Phosphor ganz im Gegenteil besonders stabil. Doch nun ist eine weitere Modifikation identifiziert: 2014 hat ein Team der Michigan State University, USA, durch Modellierungen herausgefunden, dass auch „Blauer Phosphor“ stabil sein sollte. In dieser Modifikation vernetzen sich die Phosphor-Atome ähnlich wie beim Graphen zu einer Art Bienenwabenstruktur, die jedoch nicht perfekt flach ist, sondern regelmäßige „Buckel“ hat. Modellrechnungen zeigen, dass diese Phosphor-Modifikation kein Halbleiter mit einer schmalen Energielücke ist, sondern eine verhältnismäßig große Bandlücke von 2 Elektronenvolt aufweisen sollte. Das wäre etwa der siebenfache Wert des schwarzen Phosphors im Volumen und hochinteressant für optoelektronische Anwendungen.

Blauer Phosphor an BESSY II untersucht

2016 gelang es, Blauen Phosphor durch Aufdampfen auf einer Goldoberfläche abzuscheiden. Doch erst jetzt gibt es die Gewissheit, dass es sich dabei tatsächlich um Blauen Phosphor handelt. Dafür hat ein Team vom HZB um Evangelos Golias an BESSY II erstmals die elektronische Bandstruktur solcher Proben vermessen. Sie konnten die Energieverteilung der äußeren gebundenen Elektronen im Valenzband mit der Methode der winkelaufgelösten Photoemissionsspektroskopie abtasten und damit eine untere Grenze für den Wert der Bandlücke von blauem Phosphor angeben.

Bandstruktur durch Gold-Substrat beeinflusst

Dabei fanden sie heraus, dass die P-Atome sich nicht ganz unabhängig vom Gold-Substrat anordnen, sondern versuchen, sich an die Abstände zwischen den Gold-Atomen anzupassen. Dies verzerrt das gewellte Wabengitter, was sich wiederum auf die Energieverteilung der Elektronen auswirkt. So stimmt die Oberkante des Valenzbands, wo die  Bandlücke beginnt, mit der theoretischen Vorhersage überein, ist jedoch etwas verschoben.

Ausblick: optoelektronische Anwendungen

„Bisher hat man vor allem schwarzem Phosphor benutzt, um davon einzelne Atomlagen abzutragen“, erklärt Oliver Rader, der die HZB-Abteilung „Materialien für grüne Spintronik“ leitet. „Diese einzelnen Atomlagen weisen ebenfalls eine große Bandlücke auf, besitzen aber nicht die Bienenwabenstruktur des blauen Phosphors und können vor allem nicht direkt auf einem Substrat hergestellt werden. Unsere Ergebnisse offenbaren nicht nur die Materialeigenschaften dieser neuartigen zweidimensionalen Modifikation des Phosphors, sondern zeigen auch, wie das Substrat das Verhalten der Elektronen im blauen Phosphor beeinflusst. Und das ist ein wichtiger Faktor für jegliche optoelektronische Anwendung.“

Zur Publikation in Nano Letters (2018): Band renormalization of blue phosphorus on Au(111); E. Golias, M. Krivenkov, A. Varykhalov, J. Sanchez-Barriga & O. Rader

DOI:10.1021/acs.nanolett.8b01305

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.