Themen: Energie (297) Solarenergie (235) HZB-Eigenforschung (90)

Science Highlight    12.11.2018

Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang

Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.
Copyright: HZB

Oberhalb der Perowskit-Schicht sorgt eine strukturierte Polymer-Folie für besseren Lichteinfang.
Copyright: HZB

Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert.

Tandemsolarzellen aus Silizium und Metall-Halid Perowskit-Verbindungen können einen besonders großen Anteil des Sonnenspektrums in elektrische Energie umwandeln. Allerdings wird normalerweise ein Teil des Lichts reflektiert und geht damit für die Energieumwandlung verloren. Nanostrukturen können dafür sorgen, dass die Solarzelle mehr Licht „einfängt“. So werden zum Beispiel pyramidenförmige Strukturen in Silizium eingeätzt. Solche strukturierten und damit rauen Silizium-Schichten sind allerdings nicht mehr als Unterlage für die hauchdünnen Perowskit-Schichten geeignet. Denn Perowskite werden normalerweise aus einer Lösung zu einem hauchdünnen Film aufgeschleudert, der aber auf strukturierten Silizium-Schichten nicht wie gewünscht konform aufwachsen kann.

Wirkungsgrad von 23,4 % auf 25,5 % verbessert

Ein Team um den HZB-Physiker Dr. Steve Albrecht hat nun unterschiedliche Designs von Tandemzellen mit lichteinfangenden Strukturen untersucht. Am besten funktionierten Tandemzellen, deren Silizium-Schicht von unten strukturiert war. Die Perowskit-Schicht konnte damit auf die glatte Seite des Siliziums aufgeschleudert werden. Auf die Perowskit-Schicht brachten sie zusätzlich eine Polymer-Folie auf, die ebenfalls strukturiert war, eine so genannte Lichtmanagement-Folie (LM-Folie). „Auf diese Weise gelang es uns, den Wirkungsgrad einer monolithischen Perowskit-Silizium-Tandemzelle von 23,4 % auf 25,5 % deutlich zu verbessern“, sagt Dr.Marko Jošt, Erstautor der Studie und Postdoktorand im Team von Albrecht. Die Tandemzellen wurde komplett am HZB angefertigt, die Siliziumzelle stammt aus dem PVcomB und die Perowskitzelle aus dem HySPRINT-Labor.

Modellierung zeigt: bis zu 32,5 % könnten möglich sein

Darüber hinaus haben Jošt und Kollegen ein ausgefeiltes numerisches Modell für solche komplexen 3D-Schichtstrukturen und ihre Wechselwirkung mit Licht entwickelt. Damit konnten sie berechnen, wie sich unterschiedliche Zell-Designs mit Texturen an verschiedenen Schnittstellen auf den Wirkungsgrad auswirken. „Aufgrund der komplexen Simulationen und empirischen Daten  können wir abschätzen, dass sich sogar Wirkungsgrade von 32,5 Prozent erzielen lassen – sofern es uns gelingt, Perowskit mit einer Bandlücke von 1,66 eV einzubauen“, erklärt Jošt. 

Einsatz an Fassaden (BIPV)

Und Teamleiter Steve Albrecht erklärt: „Wir haben auf der Basis von echten Wetterdaten den Energieertrag im Jahresverlauf berechnen können, und zwar für die verschiedenen Zelldesigns und für drei verschiedene Standorte.“ Außerdem zeigen die Simulationen, dass die LM-Folie auf der Oberseite der Zelle sich vor allem bei diffuser Beleuchtung, also nicht nur bei senkrechtem Lichteinfall, lohnt. Damit könnten Tandemzellen mit eingebauten LM-Folien sich auch für den Einsatz an Fassaden eignen: Mit der so genannten bauwerksintegrierten Photovoltaik (BIPV) werden aktuell riesige neue Flächen für die Energiegewinnung erschlossen.

 

Publiziert in  Energy & Environmental Sciences (2018): “Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield”¸ Marko Jošt, Eike Köhnen, Anna Morales Vilches, Benjamin Lipovšek, Klaus Jäger, Bart Macco,  Amran Al-Ashouri, Janez Krc,  Lars Korte, Bernd Rech, Rutger Schlatmann, Marko Topic, Bernd Stannowski and Steve Albrecht

DOI: 10.1039/C8EE02469C

 

arö


           



Das könnte Sie auch interessieren
  • <p>Der Teilchenbeschleuniger BESSY II in Berlin-Adlershof zieht Gastforscherinnen und Forscher aus der ganzen Welt an.</p>NACHRICHT      18.02.2019

    10 Jahre Helmholtz-Zentrum Berlin: Ein starker Partner in der Wissenschaftslandschaft

    Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) feiert am 18. Februar 2019 mit rund 250 geladenen Gästen aus Wissenschaft, Politik und Wirtschaft sein zehnjähriges Bestehen. Das Zentrum zählt zu den Top-Institutionen weltweit und leistet einen entscheidenden Beitrag für Berlin als Standort der Spitzenforschung. Dies betont Michael Müller, Regierender Bürgermeister von Berlin, anlässlich des Jubiläums. [...]


  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>SCIENCE HIGHLIGHT      14.02.2019

    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]


  • NACHRICHT      11.02.2019

    HZB beteiligt sich an zwei Exzellenzclustern

    Am Helmholtz-Zentrum Berlin (HZB) forschen Wissenschaftlerinnen und Wissenschaftler an neuartigen Materialsystemen, die Energie umwandeln oder speichern können. Diese Kompetenzen bringt das HZB nun auch in die Exzellenzcluster „MATH+“ und „UniSysCat“ ein, die von Berliner Universitäten koordiniert werden. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung in den nächsten drei Jahren im Rahmen des Helmholtz-Exzellenznetzwerks mit insgesamt 1,8 Millionen Euro. [...]




Newsletter