Unordnung bringt quantenphysikalische Talente zum Vorschein

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden.

Der Dirac-Kegel ist typisch für Topologische Isolatoren und auf allen 6 Bildern praktisch unverändert (ARPES-Messungen an BESSY II). Der blaue Pfeil zeigt zusätzlich die Valenzelektronen im Volumen. Das Synchrotronlicht tastet beide ab und kann so den Dirac Kegel an der Oberfläche (elektrisch leitend) vom dreidimensionalen Volumen (isolierend) unterscheiden. © HZB

Quanteneffekte machen sich vor allem bei extrem tiefen Temperaturen bemerkbar, was ihren Nutzen für technische Anwendungen einschränkt. Dünnschichten aus MnSb2Te4 zeigen jedoch neue Talente, weil sie zu einem kleinen Überschuss an Mangan neigen. Offenbar sorgt die entstehende Unordnung für spektakuläre Eigenschaften: Das Material erweist sich als Topologischer Isolator und ist ferromagnetisch bis zu vergleichsweise hohen Temperaturen von 50 Kelvin, zeigen Messungen an BESSY II.  Damit kommt diese Materialklasse für Quantenbits in Frage, aber auch generell für die Spintronik oder Anwendungen in der Hochpräzisions-Metrologie.

Quanteneffekte wie der anomale Quanten-Hall-Effekt ermöglichen Sensoren mit höchster Empfindlichkeit, sind die Grundlage für spintronische Bauelemente in künftigen Informationstechnologien und auch für Qubits in Quantencomputern der Zukunft. Doch in der Regel zeigen sich die dafür relevanten Quanteneffekte nur bei sehr tiefen Temperaturen nahe dem absoluten Nullpunkt und in besonderen Materialsystemen deutlich genug, um nutzbar zu sein.

Ferromagnetischer Topologischer Isolator

Nun hat ein internationales Team um den HZB-Physiker Prof. Dr. Oliver Rader und Prof. Dr. Gunther Springholz, Universität Linz, in Dünnschichten von MnSb2Te4 zwei besonders wichtige physikalische Eigenschaften beobachtet: Solche Strukturen sind robuste Topologische Isolatoren und außerdem ferromagnetisch bis zu knapp 50 Kelvin.  „Den bislang publizierten theoretischen Betrachtungen zufolge, sollte das Material weder ferromagnetisch noch topologisch sein“, sagt Rader. „Wir haben genau diese beiden Eigenschaften nun aber experimentell nachgewiesen.“

Unordnung macht den Unterschied

Die Gruppe kombinierte Messungen von spin- und winkelaufgelöster Photoemissionsspektroskopie (ARPES) und magnetischen Röntgenzirkulardichroismus (XMCD) an BESSY II, untersuchte die Oberflächen mit Rastertunnelmikroskopie (STM) und -spektroskopie (STS), und führte weitere Untersuchungen durch. „Dadurch ist nun auch klar, warum in diesem Fall die theoretische Betrachtung zu einem anderen Resultat gekommen ist – die Theorie ging von einer ideal geordneten Struktur aus, aber wir sehen, dass die zusätzlichen Mangan-Atome zu einer gewissen Unordnung geführt haben. Das erklärt den Unterschied“, so Rader.

Robust bis zu 50 Kelvin

Die Eigenschaften sind außerordentlich robust und treten bis zu einer Temperatur von knapp 50 K auf, das liegt dreimal höher als bei den besten ferromagnetischen Systemen zuvor (siehe Nature, 2019). Damit ist dieses Material ein interessanter Kandidat für die Spintronik und sogar für Qubits.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.