Fermi Arcs in an Antiferromagnet detected at BESSY II

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs.

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs. © https://www.nature.com/articles/s41586-022-04412-x.

An international cooperation has analysed samples of NdBi crystals which display interesting magnetic properties. In their experiments including measurements at BESSY II they could find evidence for so called Fermi arcs in the antiferromagnetic state of the sample at low temperatures. This observation is not yet explained by existing theoretical ideas and opens up exciting possibilities to make use of these kind of materials for innovative information technologies based on the electron spin rather than the charge.


Neodymium-Bismuth crystals belong to the wide range of materials with interesting magnetic properties. The Fermi surface which is measured in the experiments contains information on the transport properties of charge carriers in the crystal. While usually the Fermi surface consists of closed contours, disconnected sections known as Fermi arcs are very rare and can be signatures of unusual electronic states.

Unusual magnetic splittings

In a study, published now in Nature, the team presents experimental evidence for such Fermi arcs. They observed an unusual magnetic splitting in the antiferromagnetic state of the samples below a temperature of 24 Kelvin (the Néel-temperature). This splitting creates bands of opposing curvature, which changes with temperature together with the antiferromagnetic order.

These findings are very important because they are fundamentally different from previously theoretically considered and experimentally reported cases of magnetic splittings. In the case of well-known Zeeman and Rashba splittings, the curvature of the bands is always preserved. Since both splittings are important for spintronics, these new findings could lead to novel applications, especially as the focus of spintronics research is currently moving from traditional ferromagnetic to antiferromagnetic materials.

arö


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells.