• Strobl, M.; Treimer, W.; Kardjilov, N.; Hilger, A.; Zabler, S.: On neutron phase contrast imaging. Nuclear Instruments & Methods in Physics Research B 266 (2008), p. 181-186

10.1016/j.nimb.2007.10.016

Abstract:
Improving the spatial resolution conditions in a neutron imaging experiment enables the detection of phase-based contrast in addition to attenuation contrast. Addressing not only the amplitude but also the phase of radiation in an imaging experiment allows for obtaining additional information about the sample. The so-called neutron phase contrast method improves imaging results mainly by edge enhancement which increases the visibility of sub-resolution structures and of low attenuation contrast materials. These effects have been found at high intensity synchrotron X-ray sources before and have been applied to neutron imaging recently. However, the excellent coherence conditions and spatial resolution of imaging instruments at state-of-the-art synchrotron sources can hardly be compared to neutron imaging. Nevertheless, edge enhancement has been found for increased resolution (coherence) conditions in neutron experiments as well. As for X-ray instruments the effects have been explained by diffraction, although typical interference fringes have never been recorded. In contrast this article will explain the effects measured with neutron radiation by refraction and total reflection. Both of these do not require high spatial coherence. Therefore improved resolution and not increased coherence will be considered as precondition to obtain the reported signals and to understand the results. Considerations concerning relaxed collimation requirements for improved detector resolutions will be presented as a consequence.