• Zendler, C.; Nekrassov, D.; Lieutenant, K.: An improved elliptic guide concept for a homogeneous neutron beam without direct line of sight. Nuclear Instruments & Methods in Physics Research A 746 (2014), p. 39-46

10.1016/j.nima.2014.01.044
Open Access Version

Abstract:
Ballistic neutron guides are efficient for neutron transport over long distances, and in particular elliptically shaped guides have received much attention lately. However, elliptic neutron guides generally deliver an inhomogeneous divergence distribution when used with a small source, and do not allow kinks or curvature to avoid a direct view from source to sample. In this article, a kinked double-elliptic solution is found for neutron transport to a small sample from a small (virtual) source, as given e.g. for instruments using a pinhole beam extraction with a focusing feeder. A guide consisting of two elliptical parts connected by a linear kinked section is shown by VITESS simulations to deliver a high brilliance transfer as well as a homogeneous divergence distribution while avoiding direct line of sight to the source. It performs better than a recently proposed ellipse-parabola hybrid when used in a ballistic context with a kinked or curved central part. Another recently proposed solution, an analytically determined non-linear focusing guide shape, is applied here for the first time in a kinked and curved ballistic context. The latter is shown to yield comparable results for long wavelength neutrons as the guide design found here, with a larger inhomogeneity in the divergence but higher transmission of thermal neutrons. It needs however a larger (virtual) source and might be more difficult to build in a real instrument.