Soltwisch, V.; Haase, A.; Wernecke, J.; Probst, J.; Schoengen, M.; Burger, S.; Krumrey, M.; Scholze, F.: Correlated diffuse x-ray scattering from periodically nanostructured surfaces. Physical Review B 94 (2016), p. 035419/1-5
Open Accesn Version

Laterally periodic nanostructures were investigated with grazing incidence small angle x-ray scattering. To support an improved reconstruction of nanostructured surface geometries, we investigated the origin of the contributions to the diffuse scattering pattern which is correlated to the surface roughness. Resonant diffuse scattering leads to a palmlike structure of intensity sheets. Dynamic scattering generates the so-called Yoneda band caused by a resonant scatter enhancement at the critical angle of total reflection and higher-order Yoneda bands originating from a subsequent diffraction of the Yoneda enhanced scattering at the grating. Our explanations are supported by modeling using a solver for the time-harmonic Maxwell's equations based on the finite-element method.