Themen: Kooperationen (139) Lebenswissenschaften (60) Preise (7)

Nachricht    23.10.2018

ERC-Synergy-Grant mit HZB-Beteiligung eingeworben

Der Informatiker Andreas Maier, die Materialforscherin Silke Christiansen und der Mediziner Georg Schett haben gemeinsam einen ERC Synergy Grant eingeworben.
Copyright: FAU

Neuartiges Röntgenmikroskop soll Mikrostrukturen in situ und in vivo abbilden

Ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern will ein neues bildgebendes Verfahren zur Untersuchung von Osteoporose und anderen Knochenerkrankungen für den Einsatz am lebenden Individuum entwickeln, um raschere Therapieerfolge zu ermöglichen. Prof. Dr. Silke Christiansen, Wissenschaftlerin am HZB und Physik-Professorin an der Freien Universität Berlin bringt ihre Expertise in der korrelativen Mikroskopie und Nanotechnologie ein. Das Projekt 4-D+ nanoSCOPE wurde nun vom Europäischen Forschungsrat (ERC) zur Förderung durch einen ERC-Synergy Grant ausgewählt und wird für 72 Monate mit bis zu 12,3 Mio. Euro gefördert werden.

Weltweit nimmt die Zahl älterer und hochbetagter Menschen zu, und damit auch die Anzahl von Patienten, die an Osteoporose leiden. Diese Krankheit beeinträchtigt die Lebensqualität erheblich und führt zu hohen gesellschaftlichen Kosten. Dennoch sind Entstehung und Ablauf von Osteoporose noch immer nicht ausreichend verstanden. Denn Methoden für eine tiefgehende Analyse der Knochenfeinstruktur im Zeitverlauf am lebenden Individuum stehen bisher nicht zur Verfügung, insbesondere solche, die auch große Matrixstudien mit statistischer Signifikanz erlauben. Dies will nun ein interdisziplinäres Forschungsprojekt ändern.

Die Professoren Georg Schett (Universitätsklinikum Erlangen), Andreas Maier (Friedrich-Alexander-Universität Erlangen Nürnberg) und Silke Christiansen (Helmholtz-Zentrum Berlin für Materialien und Energie, HZB sowie Freie Universität Berlin) wollen dafür erstmals Röntgenmikroskopie an Lebewesen ermöglichen. Sie planen die Entwicklung eines einzigartigen, schnell scannenden und niedrig dosierten Röntgenmikroskops, einem „4D+ nanoSCOPE“ für das sie in enger Zusammenarbeit mit der Firma Carl Zeiss Microscopy ein Gerät vom Typ XRM Versa 520 Hardware- und Software-seitig modifizieren werden. Hier werden insbesondere die Integration einer neuartigen Hochleistungsröntgenquelle und eines ultra-schnellen Auslesedetektors erfolgen wobei auch die Datenauswertung mit neusten Verfahren des maschinellen Lernens (Precision Learning) neu aufgestellt werden muss.

Das 4D-Nanoskop wird erstmalig erlauben die Mikro- und Nanostruktur von Knochen am lebenden Individuum in zeitlicher Entwicklung zu monitoren und damit den Prozess des Knochenumbaus zu verstehen. Damit wird es möglich, Auswirkungen von Alter, Hormonstatus, Entzündungsprozessen, Medikamenten oder anderen Therapieansätzen auf den Knochen zu beurteilen.

„Wir gratulieren Silke Christiansen und ihren Kollegen zu dieser sehr prestigeträchtigen und wirklich synergetischen Förderung. Das neue Mikroskop wird zunächst in der medizinischen Forschung eingesetzt, aber wir freuen uns darauf, seine einzigartigen Möglichkeiten auch in der Energieforschung zu nutzen", sagt Prof. Bernd Rech, wissenschaftlicher Direktor des HZB. Die Methode ermöglicht auch in situ-Studien von dynamischen Prozessen in natürlichen und synthetischen Materialien, beispielsweise die Beobachtung und das Verfolgen von Korrosionsprozessen und Mikrofrakturierung.

Das HZB besitzt große Expertise auf dem Gebiet der Röntgenuntersuchungen und der Elektronenmikroskopie und hat einen modernen Gerätepark (CoreLabs) aufgebaut, der vor allem zur Forschung an Dünnschichtsolarzellen, solaren Brennstoffen und anderen Energiematerialien genutzt wird. Die HZB CoreLabs sowie modernste Zeiss Labs@Location-Röntgenmikroskope ergänzen das Synchrotron BESSY II.

 

Projektname: 4-D+ nanoScope – Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope.

red.


           



Das könnte Sie auch interessieren
  • <p>Im Innovationslabor HySPRINT arbeiten HZB-Teams an neuen Verfahren zur Herstellung von Perowskit-Solarzellen.</p>NACHRICHT      16.05.2019

    Europäische Perowskit-Initiative EPKI gestartet

    Perowskit-basierte Solarzellen haben in den letzten zehn Jahren enorme Fortschritte gemacht und erreichen im Labormaßstab bereits Wirkungsgrade von 24,2% (Anfang 2019) in Single-Junction-Architekturen und bis zu 28% im Tandem mit kristallinem Silizium. Dies macht sie zu der Solartechnologie, die sich bis heute am schnellsten entwickelt. Das Helmholtz-Zentrum Berlin hat in den letzten Jahren mit dem HySPRINT Projekt und der Rekrutierung talentierter Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler eine erhebliche Forschungskapazität im Bereich Perowskit-Materialien aufgebaut und beteiligt sich an der nun gestarteten Europäischen Perowskit-Initiative EPKI. [...]


  • <p>Das Enzym MHETase ist ein riesiges komplex gefaltetes Molek&uuml;l. MHET-Molek&uuml;le aus PET-Kunststoff docken an einer aktiven Stelle im Inneren der MHETase an und werden dort aufgespalten.</p>SCIENCE HIGHLIGHT      12.04.2019

    „Molekulare Schere“ für den Plastikmüll

    Ein Team der Universität Greifswald und des Helmholtz-Zentrums Berlin (HZB) hat an BESSY II die Struktur eines wichtigen Enzyms ("MHETase") entschlüsselt. Die MHETase wurde in einem Bakterium entdeckt und ist in der Lage, zusammen mit einem zweiten Enzym, der PETase, den weit verbreiteten Kunststoff PET in seine Grundbausteine zu zerlegen. Die 3D-Struktur der MHETase ermöglichte es den Forschern bereits, die Aktivität dieses Enzyms gezielt zu optimieren, um es zusammen mit der PETase für das nachhaltige Recycling von PET zu nutzen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht. [...]




Newsletter